Z Notation

December 1, 2023

1 Definitions

There are many different ways to introduce an object in a Z specification: declarations, abbreviations, axiomatic definitions, and free types. Keep in mind that the only built-type in Z is \mathbb{Z}. Other types such as \mathbb{N} are defined based on \mathbb{Z}.

Given a type X, we may introduce an element of such type as $x: X$, which is called a signature. We may also supply constraints to a signature: $x: X \mid x \in \mathbb{N} \wedge x<5$.

1.1 Declarations

The declaration [Type] introduces a new basic type called Type, which represents a set. We may declare multiple types by separating them by comma: [Type1, Type2].

1.2 Abbreviations

An abbreviation introduces a new type in terms of equality of another existing entity. We may replace the abbreviation with the actual value anywhere in the specification.

For example: Numbers $==\mathbb{N}$, or Primary $==\{$ red, green, blue $\}$. In the last example, red, green, and blue must have been defined elsewhere. If they are elements of set Colours, then Primary : \mathbb{P} Colours. Keep in mind that abbreviations should not introduce recursive definitions.

More complex abbreviations can be introduced using set comprehensions:

$$
\text { Even }==\{n: \mathbb{N} \mid n \bmod 2=0\}
$$

Abbreviations may be generic, in which case there will be a set of parameters following the defined symbol. We can define the empty set using a generic abbreviation:

$$
\emptyset[S]==\{x: S \mid \text { false }\}
$$

And then we can talk about the empty set of natural numbers as $\emptyset[\mathbb{N}]$. Notice that the square brackets are optional (so $\emptyset \mathbb{N}$ is valid) but may be used for readability purposes.
Z also allows syntax sugar to define infix generic abbreviations. For example: s rel $t==\mathbb{P}(s \times t)$ is equivalent to: $\operatorname{rel}[s, t]==\mathbb{P}(s \times t)$.

1.3 Axiomatic Definitions

These types of definitions come with a constraint predicate. Such definitions are said to be axiomatic, given the predicate must hold whenever the symbol is used. For example, we can define natural numbers as:

$$
\left\lvert\, \begin{aligned}
& \mathbb{N}: \mathbb{P} \mathbb{Z} \\
& \forall \forall z: \mathbb{Z} \bullet z \in \mathbb{N} \Leftrightarrow z \geq 0
\end{aligned}\right.
$$

The default constraint of an axiomatic definition is true, so:

$$
x: S
$$

Is the same as:

$x: S$
true

An axiomatic definition can be proved to be consistent with a proof of existence. Given the axiomatic definition $\mathbb{N}: \mathbb{P} \mathbb{Z}$ from before, we must prove that $\exists \mathbb{N}: \mathbb{P} \mathbb{Z} \bullet \forall z: \mathbb{Z} \bullet z \in \mathbb{N} \Leftrightarrow z \geq 0$. That it, that there exists an element that adheres to the definition.

Notice that we can define a boolean functions using an axiomatic definition, in which case making use of the operation involves using the existential operator.

$$
\begin{array}{|l}
\text { crowds }: \mathbb{P}(\mathbb{P} \text { Person }) \\
\hline \text { crowds }=\{p: \mathbb{P} \text { Person } \mid \# s \geq 3\}
\end{array}
$$

In this case, $\{J o h n, J a n e, J a c k\} \in$ crowds. However, Z supports syntax sugar to express that an axiomatic definition takes an argument:

$$
\begin{aligned}
& \text { crowds_ }: \mathbb{P}(\mathbb{P} \text { Person }) \\
& \mid \text { crowds }=\{p: \mathbb{P} \text { Person } \mid \# s \geq 3\}
\end{aligned}
$$

And in that case, we can say crowds(\{John, Jane, Jack $\}$).
Given an axiomatic definition, if more than one set satisfies the constraints, then the definition is loose.

Axiomatic definitions may be generic, as long as the generic parameters are sets. For example:

$$
\begin{aligned}
& =[X]=\overline{\mathbb{P}_{1}: \mathbb{P}(\mathbb{P} X)} \\
& \mathbb{P}_{1}=\{s: \mathbb{P} X \mid s \neq \emptyset\}
\end{aligned}
$$

We may also define an infix operator as a generic axiomatic definition:

$$
\begin{aligned}
& \left.=[X] \overline{\overline{-} \subseteq} \begin{array}{l}
-\mathbb{P} X \leftrightarrow \mathbb{P} X \\
\\
\forall s, t: \mathbb{P} X \bullet s \subseteq t \Leftrightarrow x \in s \Rightarrow y \in s
\end{array}\right] .
\end{aligned}
$$

Since the subset symbol is a generic axiomatic definition, given $X, Y: \mathbb{P} \mathbb{N}$, we can say $X \subseteq[\mathbb{N}] Y$, even though the generic parameters are usually obvious from the context.

1.4 Free Types

Free types are used to model more complex, and potentially recursive, data structures.
Take the following simple example:

$$
\text { Colours }::=\text { red } \mid \text { green } \mid \text { blue }
$$

This free type defines both Colours and each of its elements as different elements (so red \neq blue, blue \neq green, etc). The ordering of the members in the definition not important.

Free types may use constructor functions. These are injective functions that map from a set of constructor arguments to the free type itself. For example:

$$
\text { MaybeInt }::=\text { nothing } \mid \text { some }\langle\langle\mathbb{Z}\rangle\rangle
$$

In this case, some is a constructor function that maps \mathbb{Z} to MaybeInt, and we may define elements such as some $(3) \in$ MaybeInt, or nothing \in MaybeInt.

Free types can also be recursive by having constructors that take the free type as an argument. For example:

$$
\text { Nat }::=\text { zero } \mid \operatorname{succ}\langle\langle N a t\rangle\rangle
$$

A free type may have more than one constructor. For example:

$$
\text { Tree }::=\text { leaf } \mid \text { branch }\langle\langle\text { Tree } \times \text { Tree }\rangle\rangle
$$

A free type is consistent if each of its constructors involves Cartesian products, finite power sets, finite functions, and finite sequences. The following free type is not considered to be consistent:

$$
T::=c\langle\langle\mathbb{P} T\rangle\rangle
$$

2 Functions

Z functions fall into the following categories:

- \rightarrow Partial
- \rightarrow Total
- \rightarrow Partial, Injective
- \mapsto Total, Injective
- \rightarrow Partial, Surjective
- \rightarrow Total, Surjective
- \rightarrow Partial, Bijective
- \longrightarrow Total, Bijective

2.1 Defining Functions

We may define a function using an axiomatic definition and lambda notation:

$$
\begin{array}{|l}
\text { double }: \mathbb{Z} \rightarrow \mathbb{N} \\
\hline \text { double }=\lambda m: \mathbb{Z} \mid m \in \mathbb{N} \bullet m+m
\end{array}
$$

We can also define functions using axiomatic definitions and equivalences:

$$
\begin{aligned}
& =[X] \overline{\overline{\mathbb{F}} X \rightarrow \mathbb{N}} \\
& \quad \#: \vec{F}: \mathbb{F} X ; n: \mathbb{N} \bullet \# s=n \Leftrightarrow \exists f:(1 . . n) \mapsto s \bullet \text { true }
\end{aligned}
$$

We can define functions that take more than one arguments by using cartesian products:

$$
\begin{array}{|l}
\max :(\mathbb{N} \times \mathbb{N}) \rightarrow \mathbb{N} \\
\forall \forall x, y: \mathbb{N} \bullet(x<y \Rightarrow \max (x, y)=y) \wedge(x \geq y \Rightarrow \max (x, y)=x)
\end{array}
$$

We can define recursive functions as follows:

$$
\begin{aligned}
& \begin{array}{l}
=[X] \xlongequal{\text { reverse }: \operatorname{seq} X \rightarrow \operatorname{seq} X}
\end{array} \\
& \forall x: \operatorname{seq} X \bullet \\
& \text { reverse }\rangle=\langle \rangle \wedge \\
& \text { reverse }(\langle x\rangle \frown s)=(\text { reverse }(s))^{\wedge}\langle x\rangle
\end{aligned}
$$

2.2 Function Sets

We may define injections as abbreviations:

$$
\begin{aligned}
& A \mapsto B==\{f: A \mapsto B \mid \forall x, y: \operatorname{dom}(f) \bullet f(x)=f(y) \Rightarrow x=y\} \\
& A \mapsto B==(A \rightarrow B) \cap(A \nrightarrow B)
\end{aligned}
$$

We may also define surjections the same way:

$$
\begin{aligned}
& A \rightarrow B==\{f: A \rightarrow B \mid \operatorname{ran}(f)=B\} \\
& A \rightarrow B==(A \rightarrow B) \cap(A \rightarrow B)
\end{aligned}
$$

Finally, we can also define bijections using injections and surjections:

$$
\begin{aligned}
& A \nrightarrow B==(A \nrightarrow B) \cap(A \nrightarrow B) \\
& A \mapsto B==(A \rightarrow B) \cap(A \nrightarrow B)
\end{aligned}
$$

The set of all finite functions from A to B is denoted $A>B$. The set of all finite injections from A to B is denoted as $A \leadsto B$, which can be defined as $A \leftrightarrows B \cap A \nrightarrow B$.

3 Schemas

A schema can be defined inline as MySchema $\widehat{=}[$ declaration \mid predicate $]$ or as:
$\left[\begin{array}{l}\text { MySchema } \\ \text { declaration } \\ \hline \text { predicate }\end{array}\right.$

Omitting the predicate has the same result as providing a true predicate. Adding more than one predicate in different lines assumes a conjunction between the predicates.

We may use schemas to define composite data types, similar to structs in certain programming languages. Take the following schema as an example:

```
MySchema
    a:\mathbb{Z}
    c:\mathbb{PN}
```

The type MySchema is the set of all possible combinations of the members a and c. Given an instance of MySchema called MyInstance, we can access its members using dot notation: MyInstance.a and MyInstance.c.

Schemas may be generic:

```
MyGenericSchema[X,Y]
    a:X
    c:\mathbb{P}Y
```

And could have then defined MySchema as MySchema $\widehat{=}$ MyGenericSchema $[\mathbb{Z}, \mathbb{N}]$.
Schemas may impose constraints. For example:

$$
\left[\begin{array}{l}
\text { MySchema } \\
a: \mathbb{Z} \\
c: \mathbb{P} \mathbb{N}
\end{array}\right.
$$

In this case, we can only instantiate MySchema if its member a is greater than 5 .
A schema may be used as the declaration part of a lambda expression:

$$
f o o==\lambda M y S c h e m a \bullet a^{2}
$$

3.1 Set Comprehensions

Using a schema in a set comprehension introduces all its members into the scope. Given a schema MySchema with members a and c, we can write the following comprehension to return the set of values of c where the instance had $a=0$:

$$
\{\text { MySchema } \mid a=0 \bullet c\}
$$

This is logically the same as:

$$
\{x: \text { MySchema } \mid x . a=0 \bullet x . c\}
$$

3.2 Bindings

We can instantiate a schema using the concept of bindings. Given the following schema:
$\square^{M y S c h e m a}$

$a: \mathbb{N}$
$b: \mathbb{N}$
$a<b$

We can instantiate it as:

$$
\begin{aligned}
& \text { instance }: \text { MySchema } \\
& \text { instance }==\ a \rightsquigarrow 5, b \rightsquigarrow 7\rangle
\end{aligned}
$$

The bound variables should match the schema declaration, and the chosen values must obey the schema constraints, if any, otherwise the instantiation is undefined. We say that a is bound to 5 , and b is bound to 7 .

Given a schema MySchema, θ MySchema represents the characteristic binding of MySchema. If MySchema contains two declarations: a and b, then $\theta M y S c h e m a=\langle a \rightsquigarrow a, b \rightsquigarrow b\rangle$. Basically, we create an instance of MySchema where its a and b obtain the value of the a and b variables in the current scope. If we have $a=3$ and $b=5$ on the current scope, then θ MySchema $=\langle a \rightsquigarrow 3, b \rightsquigarrow 5\rangle$.

Notice that all possible instances of MySchema can be expressed as $\{a: \mathbb{N} ; b: \mathbb{N} \bullet \backslash a \rightsquigarrow a, b \rightsquigarrow$ $b\rangle\}$, which is of course the same as $\{a: \mathbb{N} ; b: \mathbb{N} \bullet \theta M y S c h e m a\}$, which is in turn equal to $\{M y S c h e m a \bullet \theta M y S c h e m a\}$. This means that a signature such as $p: M y S c h e m a$ is just a shortcut for $p \in\{$ MySchema - θ MySchema $\}$. Thus we can say p is a binding that happens to match MySchema.

3.3 Operations

We can use schemas to model operations. This is done by defining the properties of a state before and after the operation. Consider the following simple schema that defines the state of our system:
\qquad
SystemState $x: \mathbb{Z}$

An operation schema adds the state in the declaration section. A trailing quote describes the state after the operation, and it introduces members with a trailing quote into the scope:
$\left[\begin{array}{l}\text { Multiply } \\ \begin{array}{l}\text { SystemState } \\ \text { SystemState }\end{array} \\ \hline x^{\prime}=x+x\end{array}\right.$

Its considered best practice to also introduce a schema that defines the initial state of the system, by adding constraints over the after state:
\square SystemStateInit \qquad
SystemState ${ }^{\prime}$

$$
x^{\prime}=0
$$

Z includes a couple of shorthands to describe state transformations. Δ SystemState, used to describe state mutations, results in the following schema:

$$
\left[\begin{array}{l}
\Delta \text { SystemState } \\
\text { SystemState } \\
\text { SystemState }
\end{array}\right.
$$

Therefore we can re-write our Multiply operation as:

$$
\left[\begin{array}{l}
\text { Multiply } \\
\Delta \text { SystemState } \\
x^{\prime}=x+x
\end{array}\right.
$$

Schema operations can define inputs and outputs in the declaration part. Declarations ending with a question sign and with an exclamation sign are considered inputs and outputs, respectively. For example:

$$
\begin{aligned}
& \text { Add } \\
& \Delta \text { SystemState } \\
& n ?: \mathbb{Z} \\
& r!: \mathbb{Z} \\
& x^{\prime}=x+n ? \\
& r!=x^{\prime}
\end{aligned}
$$

Given SystemState in the scope, we may use θ SystemState and θ SystemState ${ }^{\prime}$ to refer to the combination of state values before or after the operation. We can exploit this to define Ξ SystemState, which looks like this:

$$
\begin{aligned}
& \text { ĐSystemState } \\
& \Delta \text { SystemState }^{\prime} \\
& \text { } \text { SSystemState }^{\prime}=\text { OSystemState }
\end{aligned}
$$

This is useful to define operations that don't mutate the system state, as it concisely states that all the members of the state schema should remain the same after applying the operation. For example:

```
_Get Value
    \XiSystemState
    r!:\mathbb{Z}
    r!=x
```

\qquad

If an operation schema doesn't constraint the states it can be applied to, then its considered to be a total operation. Otherwise its considered to be a partial operation.

3.4 Normalization

Normalization is the process of rewriting a schema such that all the constraint information appears in the predicate part. This might require recursively normalizing other required schemas. For example, consider the following schemas:

$$
\begin{aligned}
& S \\
& a: \mathbb{N} \\
& b: \mathbb{N} \\
& a \neq b
\end{aligned}
$$

Increment \qquad
ΔT
$i n ?: \mathbb{N}$
out! : \mathbb{N}
$a^{\prime}=a+i n ?$
$b^{\prime}=b$
$c^{\prime}=c$
out! $=c$
$b \neq c$

The normalized form of Increment looks like this:

```
Increment
    \(a, b, c, a^{\prime}, b^{\prime}, c^{\prime}: \mathbb{Z}\)
    \(i n ?: \mathbb{Z}\)
    out! : Z
    \(a \geq 0 \wedge b \geq 0 \wedge c \geq 0\)
    \(a^{\prime} \geq 0 \wedge b^{\prime} \geq 0 \wedge c^{\prime} \geq 0\)
    \(i n ? \geq 0\)
    out \(!\geq 0\)
    \(a^{\prime}=a+i n\) ?
    \(b^{\prime}=b\)
    \(c^{\prime}=c\)
    out! \(=c\)
    \(a \neq b\)
    \(a^{\prime} \neq b^{\prime}\)
    \(b \neq c\)
    \(b^{\prime} \neq c^{\prime}\)
```

Notice we replaced \mathbb{N} with \mathbb{Z} as the latter is the only built-in number type in Z.

3.5 Schema Calculus

We can manipulate schemas in different ways using logical operators. Keep in mind that is always necessary to normalize the schemas before attempting any of these operations.

A conjunction between two schemas is calculated by merging the declarations and making a conjunction of the predicates. Conjunction is undefined if there a conflict in the declarations part. For example, given the following schemas:
\qquad

$$
\left[\begin{array}{l}
B a r \\
a: \mathbb{Z} \\
b: \mathbb{Z} \\
a<30 \vee b=4
\end{array}\right.
$$

The conjunction Foo \wedge Bar equals:

$$
\begin{aligned}
& a: \mathbb{Z} \\
& b: \mathbb{Z} \\
& (a>5) \wedge(a<30 \vee b=4)
\end{aligned}
$$

Disjunctions work the same way, except that we join the predicates using a disjunction. Given the above schemas, Foo \vee Bar equals:

$$
\begin{aligned}
& a: \mathbb{Z} \\
& b: \mathbb{Z} \\
& a>5 \vee a<30 \vee b=4
\end{aligned}
$$

Negation works by simply negating the normalized predicate. \neg Bar equals:

```
a:\mathbb{Z}
b:\mathbb{Z}
\neg(a<30\veeb=4)
```


3.6 Quantification

Consider the following schema:
$\left[\begin{array}{l}\text { MySchema } \\ p: \mathbb{N} \\ q: \mathbb{P} \\ \hline p \in q\end{array}\right.$

Given using a schema introduces its members to the current scope, we can use this schema in quantifier expressions as follows:

```
\existsMySchema \bullet b=4
\MySchema \bullet c>a
```

We can also use it as a quantifier constraint:
$\forall p: \mathbb{N} ; q: \mathbb{P} \mathbb{N} \mid$ MySchema
The above example will be true if all possible combinations of p and q match the constraints imposed by MySchema.

Using a schema as a partial quantifier constraint results in a new schema. Given MySchema, $\forall q: \mathbb{P} \mathbb{N} \bullet$ MySchema is the same as
$p: \mathbb{N}$
$\forall q: \mathbb{P} \mathbb{N} \bullet p \in q$

And $\exists q: \mathbb{P} \mathbb{N} \bullet M y S c h e m a$ is the same as:
$p: \mathbb{N}$
$\exists q: \mathbb{P} \mathbb{N} \bullet p \in q$

Notice we keep every non-quantified declaration, and move the quantification to the constraint area, replacing the mention of MySchema with any actual constraint

Keep in mind that a lot of times an existential quantifier can be eliminated by using the one-point rule.

3.7 Renaming

This is a useful feature, based on substitutions, to rename properties of schemas. Take the following schema as an example:

$$
\left[\begin{array}{l}
\text { MySchema } \\
p: \mathbb{N} \\
q: \mathbb{P} \mathbb{N}
\end{array}\right.
$$

We can rename p to x and q to y by saying MyNewSchema $\widehat{=} \operatorname{MySchema}[x / p, y / q]$, which results in the following schema:

```
MyNewSchema
    \(x: \mathbb{N}\)
    \(y: \mathbb{P} \mathbb{N}\)
    \(x \in y\)
```

Notice the resulting schema, even though only renaming took place, is considered to be different, so comparing MySchema and MyNewSchema is an undefined operation.

3.8 Hiding

Hiding is a powerful mechanism for schema abstraction. We can use it to "hide" elements of the declaration part that are not required at the current level of specification.

For example, consider the following schema:
$\left[\begin{array}{l}\text { MySchema } \\ a: \mathbb{N} \\ b: \mathbb{N}\end{array}\right]$

We can hide a as MySchema $\backslash\{a\}$, which is equal to $\exists a: \mathbb{N} \bullet M y S c h e m a$:

```
b:\mathbb{N}
    \existsa:\mathbb{N}\bulletP
```

Note the close relationship between hiding and schema existential quantification.

3.9 Composition

We can think of schema operations as relations between states of the system. Given a state State and two operations Operation 1 and Operation 2 that operate on State, we can introduce a temporary version of the state called State ${ }^{\prime \prime}$. Then, if Operation 1 and Operation 2 are composed, the result is an operation that maps from State to State" ${ }^{\prime \prime}$, and then from State ${ }^{\prime \prime}$ to State ${ }^{\prime}$, where State ${ }^{\prime \prime}$ is hidden.

More formally, if our operations mutate a state containing a and b, then:

Operation1 ${ }_{9}$ Operation $2=$

$\left(\right.$ Operation $1\left[a^{\prime \prime} / a^{\prime}, b^{\prime \prime} / b^{\prime}\right] \wedge$ Operation $\left.2\left[a^{\prime \prime} / a, b^{\prime \prime} / b\right]\right) \backslash\left\{a^{\prime \prime}, b^{\prime \prime}\right\}$
Basically, we rename the after state of Operation 1 to be the intermediary state, then rename the before state of Operation 2 to be the intermediary state, conjunct both schemas, and then hide the intermediary state.

3.10 Promotion

Promotion, or framing, is a structuring technique to reduce the specification complexity when modeling operations on a single data type, that take a composite type as an input. For example, given a sequence of complex types and an operation on a single complex type, promotion allows us to define the same operation that acts on a single complex type taking the sequence as an input.

Consider the following schemas:

$$
\begin{aligned}
& \text { Data } \\
& \text { value: Value }
\end{aligned}
$$

\qquad
Array
array : seq Data

And an operation on Data:

```
AssignData
    \DeltaData
    new?: Value
    value ' = new?
```

We can write the following schema to promote AssignData to work on Array:

```
AssignDataPromote
\(\Delta\) Array
    \(\Delta\) Data
    index?: \(\mathbb{N}\)
    index \(? \in \operatorname{dom}(\) array \()\)
    \(\{\) index \(?\} \notin\) array \(=\{\) index \(?\} \notin\) array \(^{\prime}\)
    \(\operatorname{array}(\) index? \()=\theta\) Data
    \(\operatorname{array}^{\prime}(\) index \(?)=\theta\) Data \(^{\prime}\)
```

The first constraint ensures that the given index is valid, and exists in the array. The second constraint ensures the elements on the array other than the specified one will remain the same. The remaining constraints state that the element at index? will follow the transformations made to Δ Data.

Notice the promotion schema only specifies the relation between the transformation of a single data element and the transformation of an array of such data elements. The idea is to then calculate AssignDataPromote \wedge AssignData:

```
A Aray
\DeltaData
index?: N
new?: Value
index? \in dom(array)
{index?} & array = {index?} }\triangleleft\mp@subsup{\mathrm{ array }}{}{\prime
array(index?) = 0Data
```



```
value' = new?
```

And then hide Δ Data, as the user is not expected to pass it directly:

```
\DeltaArray
index?:\mathbb{N}
new?: Value
    \exists\DeltaData\bullet
    index? \in dom(array) ^
    {index?} & array ={index?} & array' ^
    array(index?) = 0Data }
    array'(index?) = 0Data' }
    value}\mp@subsup{}{}{\prime}=new
```

The resulting schema is effectively a promoted version of AssignData.
In conclusion, a promoted operation is defined as $\exists \Delta$ Local \bullet LocalOperation \wedge Promote .

Promotions might be free or constrained. A promotion is said to be free if the promotion schema satisfies the following statement:

```
( }\mp@subsup{\mathrm{ Local'}}{}{\prime}\bullet\exists\mp@subsup{\mathrm{ Global'}}{}{\prime}\bullet Promote ) =>( ( \mp@subsup{\mathrm{ Local'}}{}{\prime}\bullet\exists Global' \bullet Promote) 
```

Which basically means: "given that the update is possible at all, it is possible for all outcomes of the local state". This is satisfied if neither the promotion schema nor the global state definitions place any additional constraint upon the component variables of the local state schema.

3.11 Preconditions

Given an operation MyOperation, pre MyOperation refers to the (different) schema that consists of MyOperation minus any outputs and components that correspond to the state after the operation:

$$
\text { pre MyOperation }=\exists \text { State }^{\prime} \bullet \text { MyOperation } \backslash \text { outputs }
$$

The recipe to calculate these precondition schemas is:

- Expand any required schemas, Δ, Ξ, etc from the schema declaration
- Divide the declaration into 3 parts: before (including inputs), after (including outputs), and everything else

The precondition is then:

Before
\exists After \bullet Predicate

Given the following schemas:
$\left[\begin{array}{l}S \\ a, b: \mathbb{N} \\ a \neq b\end{array}\right.$

$$
\begin{aligned}
& -\begin{array}{l}
T \\
S \\
c: \mathbb{N} \\
\hline b \neq c \\
\\
- \text { Increment - } \\
\Delta T \\
\text { in?, out }!: \mathbb{N} \\
\hline a^{\prime}=a+i n ? \\
b^{\prime}=b \\
c^{\prime}=c \\
\text { out }!=c \\
b \neq c
\end{array} .
\end{aligned}
$$

We first need to expand Increment:

Increment
$a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$, in $?$, out $!: \mathbb{N}$
$a^{\prime}=a+i n$?
$b^{\prime}=b$
$c^{\prime}=c$
out $!=c$
$a \neq b \wedge a^{\prime} \neq b^{\prime}$
$b \neq c \wedge b^{\prime} \neq c^{\prime}$

Then we should divide the declaration into 3 parts (2 in this case):

$$
\begin{aligned}
& a, b, c, \text { in } ?: \mathbb{N} \\
& a^{\prime}, b^{\prime}, c^{\prime}, \text { out }!: \mathbb{N}
\end{aligned}
$$

Then we should hide the after part of the schema:

$$
\begin{aligned}
& a, b, c, \text { in } ?: \mathbb{N} \\
& \exists a^{\prime}, b^{\prime}, c^{\prime}, \text { out }!\in \mathbb{N} \\
& a^{\prime}=a+\text { in? } \\
& b^{\prime}=b \\
& c^{\prime}=c \\
& \text { out }!=c \\
& a \neq b \wedge a^{\prime} \neq b^{\prime} \\
& b \neq c \wedge b^{\prime} \neq c^{\prime}
\end{aligned}
$$

We can now simplify the quantified definition using the one-point rule:

$$
\begin{aligned}
& a, b, c, i n ?: \mathbb{N} \\
& b \neq a+i n ? \\
& b \neq c
\end{aligned}
$$

And we can finally reintroduce T into the declaration, and we will get the final precondition schema:

$$
\begin{aligned}
& T \\
& i n ?: \mathbb{N} \\
& b \neq a+i n ?
\end{aligned}
$$

Its common practice to create tables to store the preconditions of every operation in a specification, for convenience.

Notice the precondition operator distributes over \vee :

$$
O p \widehat{=} O p_{1} \vee O p_{2} \Rightarrow \text { pre } O p=\text { pre } O p_{1} \vee \text { pre } O p_{2}
$$

But it does not distribute over \wedge.

Under a free promotion, the precondition of a global operation is the conjunction of the precondition of the local operation and the precondition of the promotion:

```
pre Global = pre Local ^ pre Promotion
```

In the case of a constrained promotion, the precondition of a global operation is the precondition of the conjunction of the local operation and the promotion:

$$
\text { pre Global }=\text { pre }(\text { Local } \wedge \text { Promotion })
$$

3.12 Consistency

Every time we define a particular state, such as SystemStateInit, the starting point of SystemState, we must prove its consistency by showing that there is a set of bindings that adhere to the schema. This is called the initialization theorem for a data type. In this case, we must prove that:
\exists SystemState ${ }^{\prime}$ • SystemStateInit
In order to prove that a specification is consistent, we must prove the initialization theorem for each data type, and calculate the preconditions of each operation.

4 Refinement

Refinement is the process of developing a specification in such a way that it leads us towards a suitable implementation.

This is done by starting with a high-level specification, and then re-writing the schemas to use data structures that start resembling data structures used in real programming languages, checking that the new schemas are consistent with their previous high-level versions. Several refinement steps may be performed to approach executable code.

For example, we may start defining our system state using mathematical sets. After a refinement round, we might switch to sequences (and therefore reimplement all operations based on this new data structure), that more closely resemble arrays.

