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Abstract

An increasing amount of Internet-based software systems exchange information using the JSON serialization specifica-
tion through interfaces modeled with the JSON Schema definition language. By definition, this type of software systems
are sensitive to substandard network performance, which translates to impaired user experience. JSON is not considered
a space-efficient data interchange format. As a consequence, software systems that adopt JSON often require investing
significant capital on network resources. A solution to improve network performance and reduce bills is to transmit less
data through the use of a space-efficient JSON-compatible serialization specification. Following an in-depth survey into
the history, characteristics and inner workings of JSON-compatible serialization specifications, I present a comprehensive
space-efficiency benchmark using the SchemaStore open-source dataset of real-world JSON and JSON Schema documents
across industries. Using the conclusions from the survey and benchmark studies, I propose JSON BinPack, a novel protocol-
independent schema-driven and schema-less binary serialization specification that is strictly-compatible with JSON and
takes advantage of JSON Schema formal definitions to produce bit-strings that are space-efficient in comparison to every
considered alternative serialization specification.
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1 | Introduction

1.1 Serialization and Deserialization
Serialization is the process of translating a data structure into a bit-string (a sequence of bits) for storage or transmis-
sion purposes. The original data structure can be reconstructed from the bit-string using a process called deserial-
ization. Serialization specifications define the bidirectional translation between data structures and bit-strings. Seri-
alization specifications support persistence and the exchange of information in a machine-and-language-independent
manner.

Figure 1.1: The process of translating a data structure to a bit-string is called serialization. The process of translating
a bit-string back to its original data structure is called deserialization.

Serialization specifications are categorized based on how the information is represented as a bit-string i.e. textual
or binary and whether the serialization and deserialization processes require a formal description of the data structure
i.e. schema-driven or schema-less. Before I go into a detailed discussion about textual and binary serialization
specifications, I motivate by discussing the history and evolution of serialization specifications.

1.2 History and Evolution of Serialization Specifications

Figure 1.2: A timeline showcasing some of the most popular serialization specifications since the early 1980s.

1960s. In 1969, IBM developed GML (Generalized Markup Language) 1, a markup language and schema-less
textual serialization specification to define meaning behind textual documents. Decades later, XML [104] was inspired
by GML.

1970s. In 1972, IBM OS/360 introduced a general-purpose schema-less serialization specification as part of
their FORTRAN suite [75]. The IBM FORTRAN manuals referred to the serialization specification as List-Directed
Input/Output. It consisted of comma-separated or space-separated values that now resemble the popular CSV [127]
schema-less textual serialization specification.

1http://www.sgmlsource.com/history/roots.htm
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1980s. Microsoft invented the INI general purpose schema-less textual serialization specification 2 as part of their
MS-DOS operating system in the early 1980s (the exact year is unclear). In 2021, the Microsoft Windows operating
system continues to make use of the INI specification. INI also inspired the syntax of configuration file formats in
popular software products such as git 3 and PHP 4. In 1983, the Osborne Executive portable computer Reference
Guide [39] used the term CSV to refer to files containing comma-separated rows of data. In 1984, the International
Telecommunication Union 5 specified the ASN.1 schema-driven binary serialization specification as part of the [122]
standard. The ASN.1 serialization specification became a standalone standard in 1988. In 1986, the SGML (Standard
Generalized Markup Language), a descendant of IBM GML to define custom markup languages, was proposed as
an ISO standard [43]. In the late 1980s, NeXT introduced the schema-less textual ASCII-based [33] Property List
serialization format 6 which is now popular in Apple’s operating systems.

1990s. In 1996, the Netscape web browser used stringified representations of JavaScript data structures for data in-
terchange [41]. This serialization approach would be standardized as JSON [21] a decade later. Also, the SGML [43]
language inspired the first working draft of a general-purpose schema-less textual serialization specification named
XML (Extensible Markup Language) [22]. In 1997, The Java programming language JDK 1.1 defined a Serializable
interface 7 that provided binary, versioned and streamable serialization of Java classes and their corresponding state.
This serialization specification is referred to as Java Object Serialization 8 and it is still in use. In 1998, [102] fur-
ther improved this object serialization technique. In 1999, XML became a W3C (World Wide Web Consortium) 9

recommendation [22].
2000s. In 2000, Apple (which acquired NeXT in 1997) introduced a binary encoding for the Property List se-

rialization specification 10. A year later, Apple replaced the ASCII-based [33] original Property List encoding with
an XML-based encoding 11. In 2001, Google developed an internal schema-driven binary serialization specification
and RPC protocol named Protocol Buffers [67]. In the same year, the first draft of the schema-less textual YAML
[12] serialization specification was published as a human-friendly alternative to XML [104]. Refer to [49] for a
detailed discussion of the differences between YAML and JSON. The widely-used CSV [127] schema-less textual
serialization specification was standardized in 2005. The first draft of the JSON schema-less textual serialization
specification was published in 2006 [40]. In the same year, Facebook developed an open-source schema-driven bi-
nary serialization specification and RPC protocol similar to Protocol Buffers [67] named Apache Thrift [129]. In
2008, Google open-sourced Protocol Buffers [67]. In 2009, the MessagePack [64] schema-less binary serialization
specification was introduced by Sadayuki Furuhashi 12. Two other binary serialization specifications were released in
2009: The Apache Hadoop 13 framework introduced the Apache Avro [61] schema-driven serialization specification.
The MongoDB database 14 introduced a schema-less serialization alternative to JSON [21] named BSON (Binary
JSON) [95].

Advances since 2010. Two new schema-less binary serialization specification alternatives to JSON [21] were
conceived in 2010 and 2012: Smile [121] and UBJSON [20], respectively. In 2011, Microsoft developed Bond [96],
a schema-driven binary serialization specification and RPC protocol inspired by Protocol Buffers [67] and Apache
Thrift [129]. In 2013, the lessons learned from Protocol Buffers [67] inspired one of its original authors to create
an open-source schema-driven binary serialization specification and RPC protocol named Cap’n Proto [146]. Two
schema-less serialization specifications were created on 2013: a textual serialization specification inspired by INI
named TOML [114] and a binary serialization specification designed for the Internet of Things named CBOR [17].
In 2014, Google released FlatBuffers [143], a schema-driven binary serialization specification that was later found to
share some similarities to Cap’n Proto [146]. In 2015, Microsoft open-sourced Bond [96]. In 2016, Google introduced

2https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-
2008/cc731332(v=ws.11)?redirectedfrom=MSDN

3https://git-scm.com
4https://www.php.net
5https://www.itu.int/ITU-T/recommendations/index.aspx?ser=X
6https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/PropertyLists/

OldStylePlists/OldStylePLists.html
7https://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html
8https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html
9https://www.w3.org

10https://opensource.apple.com/source/CF/CF-1153.18/CFBinaryPList.c.auto.html
11https://web.archive.org/web/20140219093104/http://www.appleexaminer.com/MacsAndOS/Analysis/

PLIST/PLIST.html
12https://github.com/frsyuki
13https://hadoop.apache.org
14https://www.mongodb.com
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FlexBuffers [144], a schema-less variant of FlatBuffers [143].

Figure 1.3: The most popular serialization specifications by their use case.

15https://www.oss.com/company/customers.html
16https://lists.apache.org/thread.html/rc11fcfbc294bb064c6e59167f21b38f3eb6d14e09b9af60970b237d6%

40%3Cuser.avro.apache.org%3E
17https://www.linkedin.com/in/kenton-varda-5b96a2a4/
18https://github.com/google/flatbuffers/issues/6424
19https://github.com/google/flatbuffers/network/dependents
20https://groups.google.com/g/protobuf/c/tJVbWK3y_TA/m/vpOiSFfqAQAJ
21https://github.com/protocolbuffers/protobuf/network/dependents
22https://thrift.apache.org/about#powered-by-apache-thrift
23https://www.npmjs.com/package/tinycbor
24https://github.com/OneNoteDev/GoldFish
25https://github.com/outfoxx/PotentCodables
26https://github.com/PelionIoT/cbor-sync
27https://github.com/msgpack/msgpack-node/network/dependents
28https://github.com/msgpack/msgpack-ruby/network/dependents
29https://github.com/msgpack/msgpack-javascript/network/dependents
30https://github.com/msgpack/msgpack/issues/295
31https://github.com/FasterXML/smile-format-specification/issues/15
32https://docs.teradata.com/reader/C8cVEJ54PO4~YXWXeXGvsA/b9kd0QOTMB3uZp9z5QT2aw
33https://reference.wolfram.com/language/ref/format/UBJSON.html
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Table 1.1: A non-exhaustive list of companies that publicly state that they are using the binary serialization specifica-
tions discussed in this paper.

Serialization Specification Companies

ASN.1 Broadcom, Cisco, Ericsson, Hewlett-Packard, Huawei, IBM, LG Electronics, Mit-
subishi, Motorola, NASA, Panasonic, Samsung, Siemens 15

Apache Avro Bol, Cloudera, Confluent, Florida Blue, Imply, LinkedIn, Nuxeo, Spotify, Optus,
Twitter 16

Microsoft Bond Microsoft
Cap’n Proto Sandstorm, Cloudflare 17

FlatBuffers / FlexBuffers Apple, Electronic Arts, Facebook, Google, Grafana, JetBrains, Netflix, Nintendo,
NPM, NVidia, Tesla 18, 19

Protocol Buffers Alibaba, Amazon, Baidu, Bloomberg, Cisco, Confluent, Datadog, Dropbox, EA-
COMM, Facebook, Google, Huawei, Intel, Lyft, Microsoft, Mozilla, Netflix,
NVidia, PayPal, Sony, Spotify, Twitch, Uber, Unity, Yahoo, Yandex 20, 21

Apache Thrift Facebook, Cloudera, Evernote, Mendeley, last.fm, OpenX, Pinterest, Quora,
RapLeaf, reCaptha, Siemens, Uber 22

BSON MongoDB
CBOR Intel 23, Microsoft 24, Outfox 25, Pelion 26

MessagePack Amazon, Atlassian, CODESYS, Datadog, Deliveroo, GitHub, Google, GoSquared,
LinkedIn, Microsoft, Mozilla, NASA, National Public Radio, NPM, Pinterest, Sen-
try, Shopify, Treasure Data, Yelp 27, 28, 29, 30

Smile Ning, Elastic 31

UBJSON Teradata 32, Wolfram 33
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1.3 Textual and Binary Serialization Specifications
A serialization specification is textual if the bit-strings it produces correspond to sequences of characters in a text
encoding such as ASCII [33], EBCDIC/CCSID 037 [76], or UTF-8 [38], otherwise the serialization specification is
binary.

We can think of a textual serialization specification as a set of conventions within the boundaries of a text encod-
ing such as UTF-8 [38]. The availability and diversity of computer tools to operate on popular text encodings makes
textual serialization specifications to be perceived as human-friendly. In comparison, binary serialization specifica-
tions are not constrained by a text encoding. This flexibility typically results in efficient representation of data at the
expense of requiring accompanying documentation and specialized tools.

Figure 1.4: Textual and binary representations of the decimal number 3.1415926535. The textual representation
encodes the decimal number as a 96-bits sequence of numeric characters ("3" followed by ".", followed by "1", and so
forth) that we can inspect and understand using a text editor. The binary representation encodes the decimal number
in terms of its sign, exponent, and mantissa. The resulting bit-string is only 32 bits long - three times smaller than the
textual representation. However, we are unable to understand it using generally-available text-based tools.

1.4 Schema-less and Schema-driven Serialization Specifications
A schema is a formal definition of a data structure. For example, a schema may describe a data structure as consisting
of two Big Endian IEEE 754 single-precision floating-point numbers [60]. A serialization specification is schema-
less if it produces bit-strings that can be deserialized without prior knowledge of its structure and schema-driven
otherwise.

Implementations of schema-less serialization specifications embed the information provided by a schema into
the resulting bit-strings to produce bit-strings that are standalone with respect to deserialization. In comparison to
schema-driven serialization specifications, schema-less serialization specifications are perceived as easier to use be-
cause receivers can deserialize any bit-string produced by the implementation and not only the ones the receivers
know about in advance. Alternatively, schema-driven specification implementations can avoid encoding certain struc-
tural information into the bit-strings they produce. This typically results in compact space-efficient bit-strings. For
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this reason, network-efficient systems tend to adopt schema-driven serialization specifications [112]. Schema-driven
serialization specifications are typically concerned with space efficiency and therefore tend to be binary. However,
[31] propose a textual JSON-compatible schema-driven serialization specification. In the case of communication
links with large bandwidths or small datasets, the gains are negligible but considering slow communication links or
large datasets which could be terabytes in size, the choice of serialization specification could have a big impact.

Writing and maintaining schema definitions is a core part of using schema-driven serialization specifications.
Most schema-driven serialization specifications implement a custom schema language that is not usable by any other
schema-driven serialization specification. A schema-driven serialization specification may use a low-level or a high-
level schema definition language. Low-level schema definition languages such as PADS [58], BinX [154], and Data
Format Description Language (DFDL) [154] are concerned with describing the contents of bit-strings while high-
level schema definition languages such as ASN.1 [123] and JSON Schema [158] abstractly describe data structures
and depend on the serialization specification implementation to provide the corresponding encoding rules.

Often, schemas are auto-generated from formal definitions such as database tables 34, other schema languages 35,
or inferred from the data [62] [84] [6] [42] [157] [48] [28] [135] [5]. There are also examples of domain-specific
schema-driven serialization specifications where the schema definition is implicitly embedded into the serialization
and deserialization implementation routines, such as the SOL binary representation for sensor measurements [24].

Figure 1.5: An associative array (also known as a map) that consists of two decimal number properties, "latitude" and
"longitude", serialized with fictitious schema-less and schema-driven serialization specifications. The schema-less
representation (top) is self-descriptive and each property is self-delimited. In comparison, the schema-driven repre-
sentation (bottom) omits most self-descriptive information except for the length of the associative array as an integer
prefix. A reader cannot understand how the schema-driven representation translates to the original data structure
without additional information such as a schema definition.

1.5 Schema-less as a Subset of Schema-driven
Schema-driven serialization specifications avoid embedding structural information into the resulting bit-strings for
space-efficiency purposes. If a schema fails to capture essential structural information then the serialization speci-
fication has to embed that information into the resulting bit-strings. We can reason about schema-less serialization
specifications as schema-driven specifications where the schema is generic enough that it describes any bit-string and
as a consequence carries no substantial information about any particular instance. For example, a schema that defines
bit-strings as sequences of bits can describe any bit-string while providing no useful information for understanding
the semantics of such bit-strings.

The amount of information included in a schema can be thought as being inversely proportional to the information
that needs to be encoded in a bit-string described by such schema. However, schema-driven serialization specifications
may still embed redundant information into the bit-strings with respect to the schema for runtime-efficiency, compat-
ibility or error tolerance. We can rank schema-driven serialization specifications based on the extent of information
that is necessary to include in the bit-strings.

34https://github.com/SpringTree/pg-tables-to-jsonschema
35https://github.com/okdistribute/jsonschema-protobuf
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Figure 1.6: We can compare schema-less and schema-driven serialization specifications based on how much infor-
mation their resulting bit-strings contain. Schema-less specifications are equivalent in that they all consist of implicit
schemas that convey no information. However, not all schema languages supported by schema-driven specifications
can describe the same amount of information. For this reason, some schema-driven specifications need to encode
more structural information into their resulting bit-strings than others, placing them on the left hand side of the line.
Schema-driven specifications that enable meticulously defined schemas are placed on the right hand side of the line.

1.6 The Relevance of Space-efficiency
An increasing amount of software is now accessed over the Internet. As a consequence, these software systems
are particularly sensitive to substandard network performance. Given the decentralized architecture and complex
dynamics of the Internet, network communication is unpredictable and often unreliable. For consumers of Internet-
based software systems, substandard network performance results in impaired user experience. For example, Google
found that “half a second (page load) delay caused 20% drop in traffic” 36 as early as in 2006. More recently, in 2017,
Akamai, a global content delivery network (CDN), found that “a 100-millisecond delay in website load time can hurt
conversion rates by 7 percent” and that “a two-second delay in web page load time increases bounce rates by 103
percent” 37. Additionally, software systems that operate over the Internet typically rely on infrastructure as a service
(IaaS) or platform as a service (PaaS) providers such as Amazon Web Services (AWS) 38 and Microsoft Azure 39.
These providers typically operate on a pay-as-you-go model where they charge per resource utilization. Therefore,
transmitting data over the network directly translates to operational expenses.

For interoperability purposes, Internet-based software systems transmit information using data serialization spec-
ifications such as JSON [46] and XML [104]. [151] identifies JSON [46] as the dominant data interchange standard
in the context of cloud software systems. However, it concludes that JSON is not a space-efficient serialization spec-
ification. [86] argues that network communication is time-expensive and that the network communication bottleneck
makes computation essentially free in comparison. In the context of HTTP/1.1 [55], it argues that the computa-
tional overhead of making payloads space-efficient using techniques such as data compression are minimal compared
to the time-overhead of a low bandwidth network connection, which are still common according to [120]. There-
fore, in comparison to JSON [46], the use of space-efficient serialization specifications to transmit less data reduces
operational costs of Internet-based software systems and is a key factor to improve network performance and user
experience.

1.7 Contributions
For this dissertation, a research-oriented approach was pursued. The contributions are as follows:

• Paper - A Survey of JSON-compatible Binary Serialization Specifications [151], joint-paper with super-
visor, Mital Kinderkhedia. Submitted for publication. This paper consists of an in-depth study of the history,
characteristics, advantages and capabilities of the space-efficient encodings of 13 popular JSON-compatible

36http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
37https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
38https://aws.amazon.com
39https://azure.microsoft.com
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binary serialization specifications: ASN.1 [123], Apache Avro [61], Microsoft Bond [96], Cap’n Proto [146],
FlatBuffers [143], Protocol Buffers [67], Apache Thrift [129], BSON [95], CBOR [17], FlexBuffers [144],
MessagePack [64], Smile [121] and UBJSON [20]. I believe this work is the first of its kind to introduce an-
notated hexadecimal bit-strings that help the reader understand the inner workings and optimizations that these
binary serialization specifications perform when serializating a non-trivial JSON [46] document.

• Open Source Contributions. Through the process of conducting a literature review, I identified and resolved
13 issues with the documentation and specifications of the Apache Avro [61], Apache Thrift [129], FlatBuffers
[143], FlexBuffers [144], Microsoft Bond [96], and Smile [121] binary serialization open-source projects. The
fixes, corresponding patches and links are listed in Table 1.2 and Table 1.3.

• Schema Evolution Compatibility Analysis. I present and discuss an in-depth study of the schema evolu-
tion characteristics of 7 popular JSON-compatible schema-driven serialization specifications: ASN.1 [123],
Apache Avro [61], Microsoft Bond [96], Cap’n Proto [146], FlatBuffers [143], Protocol Buffers [67] and
Apache Thrift [129]. The study (see Appendix C) consists of testing 35 type conversion, enumerations, unions,
lists and structural schema transformations that either confine, expand, change or preserve the domain of the
schemas. For every case, I document whether the given schema-driven binary serialization specification fails
under such transformation or supports it as a fully-compatible, backwards-compatible or forwards-compatible
schema transformation.

• Paper - A Benchmark of JSON-compatible Binary Serialization Specifications [150], joint-paper with su-
pervisor, Mital Kinderkhedia. Submitted for publication. This paper presents and discusses a space-efficiency
benchmark of the 13 JSON-compatible binary serialization specifications studied in [151] using a dataset of 27
JSON [46] documents methodically selected using the taxonomy for JSON documents introduced in chapter 4.
I believe this work is the first of its kind to produce a comprehensive, reproducible, extensible and open-source
space-efficiency benchmark of JSON-compatible binary serialization specifications that considers a represen-
tative input dataset of real-world JSON [46] documents across industries.

• Taxonomy for JSON Documents. Through the process of conducting a literature review of space-efficiency
benchmarks involving JSON-compatible serialization specifications, I identified a lack of a methodical ap-
proach for selecting representative sets of input JSON [46] documents for benchmarking purposes. I believe
this work is the first of its kind to introduce a formal tiered taxonomy (see chapter 4) consisting of 36 categories
as a common basis to class JSON [46] documents based on their size, type of content, characteristics of their
structure and redundancy criteria.

• JSON Stats Online Tool. I developed a publicly-available web application called JSON Stats to automatically
categorize JSON [46] documents according to the taxonomy introduced in chapter 4. This online tool is avail-
able at https://www.jsonbinpack.org/stats/ and its source code is publicly-available on GitHub
40 under the Apache-2.0 software license 41. Refer to Figure 4.10 for a screenshot of the tool in action.

• Extensible Space-efficiency Benchmark Software. Through the process of conducting a literature review,
I identified a lack of an industry-standard automated software to define JSON-compatible space-efficiency
benchmarks. As a solution, I designed and implemented an extensible, automated and deterministic benchmark
platform to declare JSON [46] input documents, declare JSON-compatible serialization specifications written in
arbitrary programming languages, declare data compression formats, extract raw and aggregate statistical data
and generate plots to visualize the results. The benchmark software is publicly-available on GitHub 42 under
the Apache-2.0 software license. The benchmark runs on the cloud using GitHub Actions 43 and the results are
automatically published to https://www.jviotti.com/binary-json-size-benchmark/. This
benchmark platform is used in chapter 7 to evaluate the 13 JSON-compatible serialization specifications listed
in chapter 6 and further extended to evaluate JSON BinPack in chapter 9.

• JSON BinPack. The core contribution of this thesis is the design and development of a novel and space-
efficient strictly-JSON-compatible binary serialization specification based on JSON Schema [159] called JSON

40https://github.com/jviotti/jsonbinpack
41https://www.apache.org/licenses/LICENSE-2.0.html
42https://github.com/jviotti/binary-json-size-benchmark
43https://github.com/features/actions
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BinPack (see chapter 8). The JSON BinPack specification and its first proof-of-concept implementation are
available for free on GitHub 44 under the Apache-2.0 open-source software license. To the best of my knowl-
edge, JSON BinPack is the first schema-driven binary serialization specification to adopt JSON Schema [159]
as its schema definition language.

Table 1.2: A list of open-source contributions made by the author in the process of writing this survey paper. This
table is continued in Table 1.3.

Specification Repository Commit Description

Apache Avro
[61]

https:
//github.com/
apache/avro

afe8fa1 Improve the encoding specification to clarify that records
encode fields even if they equal their explicitly-set defaults
and that the default keyword is only used for schema
evolution purposes

Apache Thrift
[129]

https:
//github.com/
apache/thrift

2e7f39f Improve the Compact Protocol specification to clarify the
Little Endian Base 128 (LEB128) variable-length integer
encoding procedure and include a serialization example

Apache Thrift
[129]

https:
//github.com/
apache/thrift

47b3d3b Improve the Compact Protocol specification to clarify that
strings are not delimited with the NUL ASCII [33] charac-
ter

FlatBuffers
[143]

https:
//github.
com/google/
flatbuffers

4aff119 Extend the binary encoding specification to document how
union types are encoded

FlatBuffers
[143]

https:
//github.
com/google/
flatbuffers

7b1ee31 Improve the documentation to clarify that the schema lan-
guage does not permit unions of scalar types but that the
C++ [79] implementation has experimental support for
unions of structs and strings

FlatBuffers
[143]

https:
//github.
com/google/
flatbuffers

52e2177 Remove from the documentation an outdated claim that
Protocol Buffers [67] does not support union types

FlatBuffers
[143]

https:
//github.
com/google/
flatbuffers

796ed68 Improve the FlatBuffers [143] and FlexBuffers [144] en-
coding specifications to clarify that neither specifications
deduplicate vector elements but that vectors may include
more than one offset pointing to the same value

1.8 Thesis Organization
This thesis is organized as follows. In chapter 1, I present the concept of data serialization, the history and evolution of
serialization specifications and the categorization of serialization specifications into textual or binary and schema-less
or schema-driven. In chapter 2, I discuss, summarize and present existing literature covering JSON-compatible binary
serialization specifications. In chapter 3, I present the history, characteristics, shortcomings and relevance of the JSON
textual schema-less serialization specification and the JSON Schema definition language. In chapter 4, I introduce the
SchemaStore real-world open-source JSON dataset and define a taxonomy for JSON documents consisting of 36 tierer
categories as a common basis to classify JSON documents based on their size, type of content, redundancy criteria
and structural characteristics. In chapter 5, I discuss a methodical approach to study the characteristics, optimizations
and encodings of existing JSON-compatible binary serialization specifications, measure existing JSON-compatible
binary serialization specifications for space-efficiency and apply those findings to introduce a new space-efficient
JSON-compatible binary serialization specification. In chapter 6, I apply the methodology approach discussed in
chapter 5, present an analysis example of 1 out of 13 JSON-compatible binary serialization specifications, refer

44https://github.com/jviotti/jsonbinpack
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Table 1.3: Continuation of Table 1.2.

Specification Repository Commit Description

Microsoft
Bond [96]

https:
//github.com/
microsoft/bond

4acf83b Improve the documentation to explain how to enable the
Compact Binary version 2 encoding in the C++ [79] im-
plementation

Microsoft
Bond [96]

https:
//github.com/
microsoft/bond

0012d99 Improve the Compact Binary encoding specification to
clarify that ID bits are encoded as Big Endian unsigned
integers, that signed 8-bit integers use Two’s Complement
[59], formalize the concept of variable-length integers as
Little Endian Base 128 (LEB128) encoding, clarify that
real numbers are encoded as IEEE 764 floating-point num-
bers [60], and that enumeration constants are encoded as
signed 32-bit integers

Smile [121] https:
//github.com/
FasterXML/
smile-format-
specification

ac82c6b Fix the fact that the specification refers to ASCII [33]
strings of 33 to 64 bytes and Unicode [38] strings of 34
to 65 bytes using two different naming conventions

Smile [121] https:
//github.com/
FasterXML/
smile-format-
specification

7a53b0a Improve the specification by adding an example of how
real numbers are represented using the custom 7-bit variant
of IEEE 764 floating-point number encoding [60]

Smile [121] https:
//github.com/
FasterXML/
smile-format-
specification

95133dd Improve the specification to clarify how the byte-length-
prefixes of the Tiny Unicode and Small Unicode string en-
codings are computed differently compared to their ASCII
[33] counterparts

Smile [121] https:
//github.com/
FasterXML/
smile-format-
specification

c56793f Clarify that the encoding attempts to reserve the 0xff byte
for message framing purposes but that reserving such byte
is no longer a requirement to make the format suitable for
use with WebSockets

the reader to my paper A Survey of JSON-compatible Binary Serialization Specifications [151] for the remaining
12 analysis and discuss the conclusions derived from this study. In chapter 7, I apply the methodology approach
discussed in chapter 5, present benchmark results for 3 input documents out of a dataset of 27 real-world JSON
documents serialized using the 13 JSON-compatible binary serialization specifications studied in chapter 6, refer the
reader to my paper A Benchmark of JSON-compatible Binary Serialization Specifications [150] for the remaining 24
benchmark results and discuss the conclusions derived from this benchmark. In chapter 8, I present and discuss the
requirements specification, software design, architecture diagrams and a proof-of-concept implementation of JSON
BinPack, a novel and space-efficient JSON-compatible binary serialization specification based on JSON Schema. In
chapter 9, I extend the benchmark presented in chapter 7 to compare JSON BinPack against the 13 JSON-compatible
binary serialization specifications studied in chapter 6 and discuss the benchmark results. In chapter 10, I present the
problem of schema evolution in the context of data serialization, study the approaches to schema evolution adopted by
schema-driven binary serialization specifications and present an approach to address the schema evolution problem
in JSON BinPack using JSON Schema. In chapter 11, I present reflections that encompass both successes and
challenges in designing and developing the JSON BinPack binary serialization specification. In chapter 12, I present
my views on future directions for work on the JSON BinPack binary serialization specification and the problem of
JSON-compatible space-efficient serialization.
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2 | Related Literature

2.1 JSON-compatible Binary Serialization Specifications
Table 2.1 and Table 2.2 list existing literature that discusses different sets of serialization specifications, both textual
and binary, schema-less and schema-driven. However, many of these publications discuss serialization specifications
that are either not JSON-compatible, cannot be considered general-purpose serialization specifications, or are out of
date. For example, Java Object Serialization, as its name implies, is only concerned with serialization of object in-
stances in the Java programming language. The first Protocol Buffers [67] version 3 release was published on GitHub
in 2014 1, yet there are several publications listed in Table 2.1 and Table 2.2 released before that year discussing the
now-obsolete Protocol Buffers version 2 [155] [66] [92] [133] [145] [53]. As another example, [97] discusses an
ASN.1 [123] encoding (LWER) that has been abandoned in the 1990s [89].

Table 2.1: A list of publications that discuss binary serialization specifications. This table is continued in Table 2.2.

Publication Year Context Discussed Serialization Specifications

An overview of ASN.1 [99] 1992 Networking ASN.1 BER [125], ASN.1 PER [124]
Efficient encoding rules for ASN.1-based pro-
tocols [97]

1994 Networking ASN.1 BER [125], ASN.1 CER [125], ASN.1
DER [125], ASN.1 LWER [89], ASN.1 PER
[124]

Evaluation of Protocol Buffers as Data Serial-
ization Format for Microblogging Communica-
tion [155]

2011 Microblogging JSON [46], Protocol Buffers [67]

Impacts of Data Interchange Formats on Energy
Consumption and Performance in Smartphones
[66]

2011 Mobile JSON [46], Protocol Buffers [67], XML [104]

Performance evaluation of object serialization
libraries in XML, JSON and binary formats
[92]

2012 Java Object Se-
rialization

Apache Avro [61], Apache Thrift [129], Java
Object Serialization 2, JSON [46], Protocol
Buffers [67], XML [104]

A comparison of data serialization formats for
optimal efficiency on a mobile platform [133]

2012 Mobile Apache Thrift [129], JSON [46], Protocol
Buffers [67], XML [104]

Performance evaluation of Java, JavaScript and
PHP serialization libraries for XML, JSON and
binary formats [145]

2012 Web Services Apache Avro [61], Java Object Serialization
3, JSON [46], MessagePack [64], Protocol
Buffers [67], XML [104]

Google protocol buffers research and applica-
tion in online game [53]

2013 Gaming Protocol Buffers [67]

Integrating a System for Symbol Programming
of Real Processes with a Cloud Service [87]

2015 Web Services JSON [46], MessagePack [64], XML [104],
YAML [12]

1https://github.com/protocolbuffers/protobuf/releases/tag/v3.0.0-alpha-1
2https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html
3https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html
4https://www.boost.org/doc/libs/1_55_0/libs/serialization/doc/index.html
5https://github.com/RuedigerMoeller/fast-serialization
6http://hessian.caucho.com/doc/hessian-serialization.html
7https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html
8https://github.com/EsotericSoftware/kryo
9https://github.com/protostuff/protostuff

10https://www.rdfhdt.org
11https://github.com/niXman/yas
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Table 2.2: Continuation of Table 2.1.

Publication Year Context Discussed Serialization Specifications

Serialization and deserialization of complex
data structures, and applications in high perfor-
mance computing [162]

2016 Scientific Com-
puting

Apache Avro [61], Boost::serialize 4, Cap’n
Proto [146], OpenFPM Packer/Unpacker [77],
Protocol Buffers [67]

Smart grid serialization comparison: Compari-
son of serialization for distributed control in the
context of the internet of things [109]

2017 Internet of
Things

Apache Avro [61], BSON [95], CBOR [17],
FST 5, Hessian 6, Java Object Serialization 7,
Kryo 8, MessagePack [64], Protocol Buffers
[67], ProtoStuff 9, Smile [121], XML [104],
YAML [12]

Binary Representation of Device Descriptions:
CBOR versus RDF HDT [119]

2018 Internet of
Things

CBOR [17], JSON [46], RFD HDT 10

Evaluating serialization for a publish-subscribe
based middleware for MPSoCs [70]

2018 Embedded De-
velopment

FlatBuffers [143], MessagePack [64], Protocol
Buffers [67], YAS 11

Analytical Assessment of Binary Data Serial-
ization Techniques in IoT Context [14]

2019 Internet of
Things

BSON [95], FlatBuffers [143], MessagePack
[64], Protocol Buffers [67]

FlatBuffers Implementation on MQTT Pub-
lish/Subscribe Communication as Data Deliv-
ery Format [113]

2019 Internet of
Things

CSV [127], FlatBuffers [143], JSON [46],
XML [104]

Enabling Model-Driven Software Development
Tools for the Internet of Things [82]

2019 Internet of
Things

Apache Avro [61], Apache Thrift [129], Flat-
Buffers [143], JSON [46], Protocol Buffers [67]

Performance Comparison of Messaging Proto-
cols and Serialization Formats for Digital Twins
in IoV [115]

2020 Automobile Cap’n Proto [146], FlatBuffers [143], Protocol
Buffers [67]

Performance Analysis and Optimization of Se-
rialization Techniques for Deep Neural Net-
works [105]

2020 Machine
Learning

FlatBuffers [143], Protocol Buffers [67]
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2.2 Space-efficiency Benchmarks
The existing space-efficiency benchmarks involving the binary serialization specifications discussed in [151] are
summarized in Table 2.3. As demonstrated in Table 2.3, schema-less binary data serialization specifications such as
BSON [95], CBOR [17], MessagePack [64], and Smile [121] tend to produce smaller bit-strings than JSON (up to
63% size reduction compared to JSON). However, there are some exceptions. For instance, [112] and [109] found
that BSON [95] and CBOR [17] tend to produce larger bit-strings than JSON [46] for a subset of their input data (up
to 32% larger than JSON).

In comparison to schema-less serialization specifications, as demonstrated in Table 2.3, schema-driven serializa-
tion specifications such as Protocol Buffers [67], Apache Thrift [129], Apache Avro [61] tend to produce bit-strings
that are up to 95% smaller than JSON. However, in this case, there are also exceptions. For instance, [109] and [145]
found the MessagePack [64] schema-less binary serialization specification to be space-efficient in comparison to Pro-
tocol Buffers [67] and Apache Avro [61] (up to 23% size reduction). Similarly, [70] and [14] found MessagePack
[64] to be space-efficient in comparison to Protocol Buffers [67] and FlatBuffers [143] for certain cases.

Data compression is another approach to achieve space efficiency. [66] conclude that compressed JSON is space-
efficient in comparison to both compressed and uncompressed Protocol Buffers. [109] conclude that compressed
JSON is space-efficient in comparison to Protocol Buffers, Smile [121], compressed and uncompressed CBOR [17],
and compressed and uncompressed BSON [95]. However, Apache Avro [61], MessagePack [64], compressed Proto-
col Buffers, and compressed Smile are space-efficient in comparison to compressed JSON.

2.2.1 Shortcomings
I found several aspects of the existing literature to be insufficient, leading to gaps in the JSON-compatible binary
serialization space-efficiency benchmark literature for the following reasons:

Coverage of Serialization Specifications. The binary serialization specifications covered by existing bench-
marks are Protocol Buffers [67], MessagePack [64], FlatBuffers [143], and to a lesser extent: Apache Avro [61],
Apache Thrift [129], BSON [95], CBOR [17] and Smile [121]. My previous work [151] also discusses ASN.1 [123],
Microsoft Bond [96], Cap’n Proto [146], FlexBuffers [144], and UBJSON [20]. To the best of my knowledge, these
have not been considered by existing space-efficiency benchmark literature.

Reproducibility and Representativity. Neither [66], [112], [109], [119], [82], nor [115] disclose the JSON [46]
documents or schema definitions used to arrive at the result of their space-efficiency benchmarks. Therefore, it is not
possible to corroborate their findings or contextualize their results. The publications that disclose the input JSON [46]
documents are [92] and [87]. However, they are limited in scope as they consider a single JSON document in each of
their papers. Other publications disclose schema definitions of varying formality that describe the JSON documents
used as part of their benchmarks. Of those, [155] and [113] are concerned with one type of JSON document, [133]
and [53] are concerned with two types of JSON documents, and [70] and [14] are concerned with three types of JSON
documents. Therefore, I consider the results from these publications to be either not reproducible or not representative
of the variety of JSON documents that are widely used in practice across different industries.

Data Compression. I found two publications that take data compression into account: [66] and [109]. However,
they are limited in scope as these papers discuss only the GZIP [44] data compression format and there is no mention
of the implementation used and the compression level that GZIP is configured with.

Out-of-date. Some of the existing benchmarks measure obsolete versions of certain binary serialization specifi-
cations. For example, the Protocol Buffers [67] version 3 was first released in 2014 12. However, there are a number
of benchmark publications released before that year that discuss the now-obsolete Protocol Buffers version 2 [66]
[155] [92] [133] [53].

12https://github.com/protocolbuffers/protobuf/releases/tag/v3.0.0-alpha-1
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Table 2.3: A list of space-efficiency benchmark publications that involve JSON [46] and/or a subset of the binary
serialization specifications dicussed in [151]. The third column summarises the benchmark conclusions. In this table,
a serialization specification is greater than another serialization specification if it produced larger bit-strings in the
respective publication findings.

Publication Year Conclusion

Impacts of data interchange formats on energy con-
sumption and performance in smartphones [66]

2011 JSON > Protocol Buffers > Protocol Buffers with
GZIP > JSON with GZIP

Evaluation of Protocol Buffers as Data Serialization
Format for Microblogging Communication [155]

2011 JSON > Protocol Buffers

Performance evaluation of object serialization li-
braries in XML, JSON and binary formats [92]

2012 JSON > Apache Thrift > Protocol Buffers >
Apache Avro

A comparison of data serialization formats for opti-
mal efficiency on a mobile platform [133]

2012 JSON > Apache Thrift > Protocol Buffers

Google protocol buffers research and application in
online game [53]

2013 JSON > Protocol Buffers

Integrating a system for symbol programming of
real processes with a cloud service [87]

2015 JSON > MessagePack

Performance evaluation of using Protocol Buffers
in the Internet of Things communication [112]

2016 In most cases: JSON > BSON > Protocol Buffers.
However, in some cases: BSON > JSON > Proto-
col Buffers

Smart grid serialization comparison: Comparison
of serialization for distributed control in the context
of the Internet of Things [109]

2017 BSON > CBOR > JSON > BSON with GZIP
> Smile > Protocol Buffers > CBOR with GZIP
> JSON with GZIP > Apache Avro > Proto-
col Buffers with GZIP > Smile with GZIP >
MessagePack > Apache Avro with GZIP > Mes-
sagePack with GZIP

Binary Representation of Device Descriptions:
CBOR versus RDF HDT [119]

2018 JSON > CBOR

Evaluating Serialization for a Publish-Subscribe
Based Middleware for MPSoCs [70]

2018 FlatBuffers > Protocol Buffers > MessagePack

Performance Evaluation of Java, JavaScript and
PHP Serialization Libraries for XML, JSON and
Binary Formats [145]

2018 JSON > MessagePack > Protocol Buffers >
Apache Avro

Analytical assessment of binary data serializa-
tion techniques in IoT context (evaluating protocol
buffers, flat buffers, message pack, and BSON for
sensor nodes) [14]

2019 For numeric and mixed data: BSON > Flat-
Buffers > MessagePack > Protocol Buffers. For
textual data: FlatBuffers > BSON > Mes-
sagePack > Protocol Buffers

Enabling Model-Driven Software Development
Tools for the Internet of Things [82]

2019 JSON > FlatBuffers

Flatbuffers Implementation on MQTT Publish/Sub-
scribe Communication as Data Delivery Format
[113]

2019 JSON > FlatBuffers

Performance Comparison of Messaging Protocols
and Serialization Formats for Digital Twins in IoV
[115]

2020 JSON > FlatBuffers > Protocol Buffers
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3 | Background

3.1 JSON

3.1.1 History and Characteristics
JSON (JavaScript Object Notation) is a standard schema-less and textual serialization specification inspired by a
subset 1 of the JavaScript programming language [47]. Douglas Crockford 2, currently a Distinguished Architect
at PayPal, described the JSON serialization specification online 3 in 2002 and published the first draft of the JSON
serialization specification in 2006 [40]. Douglas Crockford claims he discovered and named JSON, whilst Netscape
was already using an unspecified variant as an interchange format as early as in 1996 in their web browser [41].

Figure 3.1: A JSON document example taken from the official specification [21].

JSON is a human-readable open standard specification that consists of structures built on key-value pairs or list
of ordered items. The data types it supports are objects, arrays, numbers, strings, null, and boolean constants
true and false. A data structure encoded using JSON is referred to as a JSON document. [46] states that JSON
documents are serialized as either UTF-8, UTF-16, or UTF-32 strings [38]. However, [21] mandate the use of UTF-8
for interoperability purposes. The serialization process involves recursively converting keys and values to strings
and optionally removing meaningless new line, tab, and white space characters (a process known as minification) as
shown in Figure 3.2.

Figure 3.2: A minified and semantically-equivalent version of the JSON document from Figure 3.1.

3.1.2 Relevance of JSON
JSON [46] is popular interchange specification in the context of cloud computing. In 2019, [147] found that JSON
documents constitute a growing majority of the HTTP [55] responses served by Akamai, a leading Content Delivery
Network (CDN) that serves 3 trillion HTTP requests daily. Gartner 4, a business insight research and advisory firm,
forecasts that the cloud services market will grow 17% in 2020 to total $266.4 billion and that SaaS will remain the

1http://timelessrepo.com/json-isnt-a-javascript-subset
2https://www.crockford.com/
3https://www.json.org
4https://www.gartner.com
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largest market segment 5. SaaS systems typically provide application programming interfaces (APIs) and JSON was
found to be the most common request and response format for APIs 6. According to their study, JSON was used more
than XML [104]. JSON popularity over XML can be attributed to the fact that in comparison to XML, JSON results
in smaller bit-strings and in runtime and memory efficient serialization and deserialization implementations [101].

There is an on-going interest in JSON within the research community. [18] describe the first formal framework
for JSON documents and introduce a query language for JSON documents named JSON Navigational Logic (JNL).
There is a growing number of publications that discuss JSON in the context of APIs [157] [48] [50] and technologies
that emerged from the JSON ecosystem such as the JSON Schema specification [111] [93] [68] [63]. Apart from
cloud computing, JSON is relevant in areas such as databases [34] [84] [8] [62] [110], big data [161], analytics [103]
[91], mobile applications [133] [66], 3D modelling [90], IoT [153] [100], biomedical research [81], and configuration
files, for example 7. [7] presents a high-level overview of the JSON ecosystem including a survey of popular schema
languages and implementations, schema extraction technologies and novel parsing tools.

3.1.3 Shortcomings
Despite its popularity, JSON is neither a runtime-efficient nor a space-efficient serialization specification.

Runtime-efficiency. Serialization and deserialization often become a bottleneck in data-intensive, battery-powered,
and resource-constrained systems. [103] state that big data applications may spend up to 90% of their execution time
deserializing JSON documents, given that deserialization of textual specifications such as JSON is typically expen-
sive using traditional state-machine-based parsing algorithms. [66] and [133] highlight the impact of serialization and
deserialization speed on mobile battery consumption and resource-constrained mobile platforms. As a solution, [16]
propose a promising JSON encoder and decoder that infers JSON usage patterns at runtime and self-optimizes by
generating encoding and decoding machine code on the fly. Additionally, [88] propose a novel approach to efficiently
parse JSON document by relying on SIMD processor instructions. [91] claim that applications parse entire JSON
documents but typically only make use of certain fields. As a suggestion for optimization, they propose a lazy JSON
parser that infers schemas for JSON documents at runtime and uses those schemas to speculate on the position of the
fields that an application requires in order to avoid deserializing unnecessary areas of the JSON documents.

Space-efficiency. In comparison to JSON, [112] found that using a custom binary serialization specification
reduced the overall network traffic by up to 94%. [15] conclude that JSON is not an appropriate specification for
bandwidth-constrained communication systems citing the size of the documents as the main reason. [117] states that
network traffic is one of the two biggest causes for battery consumption on mobile devices and therefore a space-
efficient serialization specification could have a positive impact on energy savings.

There are several JSON-based specifications that highlight a need for compact JSON encodings:

• JSON Patch [25] is a specification for expressing a sequence of operations on JSON documents. [29] describe
an algorithm called JDR to compute JSON Patch differences between two JSON documents optimized to keep
the number of JSON Patch operations to a minimum for space-efficiency reasons.

• CityGML is an XML-based specification to represent 3D models of cities and landscapes. [90] introduce a
JSON-based alternative to CityGML called CityJSON citing that CityGML documents are large enough that
makes it difficult or even impossible to transmit and process them on the web. In comparison to CityGML,
CityJSON results in smaller document size. However, the authors are looking for a binary JSON encoding to
compress the CityJSON documents even further. Additionally, [141] explores how CityJSON documents can
be compressed further using binary serialization specifications such as BSON [95] and CBOR [17].

• In the context of bioinformatics, mmJSON is a popular serialization specification used to encode represen-
tations of macromolecular structures. [19] introduce MMTF, a binary serialization specification to encode
macromolecular structures based on MessagePack [64] to address the space-efficiency and runtime-efficiency
concerns of using mmJSON to perform web-based structure visualization. In particular, using mmJSON, even
after applying GZIP [44] compression, results in large macromolecular structures that are slow to download.

5https://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-forecasts-worldwide-
public-cloud-revenue-to-grow-17-percent-in-2020

6https://www.programmableweb.com/news/json-clearly-king-api-data-formats-2020/research/2020/
04/03

7https://www.typescriptlang.org/docs/handbook/tsconfig-json.html
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Due to their size, the largest macromolecular structures results in deserialization memory requirements that
exceed the amount of memory typically available in web browsers.

3.2 JSON Schema

3.2.1 History and Relevance

Figure 3.3: An example of a JSON Schema document adapted from the official website 8. The JSON Schema 2020-12
[159] document (left) defines a JSON object with two required bounded numeric properties: latitude and longitude.
The JSON [46] instance document (right) is an example of a JSON value that validates against the schema definition.

JSON Schema is a set of IETF specifications [159] [160] of a JSON-based format that defines the structure and
meaning of JSON [46] documents for validation and annotation purposes.

JSON Schema was conceived at the AjaxWorld conference in 2007 during a session held by Douglas Crockford,
the original specifier of the JSON [46] serialization specification. In that session, Kris Zyp, founder of Xucia 9 and
technical writer at json.com 10 started a discussion on a schema language to validate JSON documents 11. On
that same year, Kris started collaborating with the OpenAjax Alliance 12 organization dedicated to the successful
adoption of open and interoperable Ajax-based web technologies and wrote the first JSON Schema proposal 13 14

based on the concepts of XML Schema [65], the RelaxNG [36] XML [104] schema language, and the Kwalify 15

open-source JSON [46] schema validator. In 2008, Kris launched the json-schema.org website 16 and started
the JSON Schema Google Group 17 that is still active at the time of this writing. Since then, 9 versions of JSON
Schema have been published at IETF. The latest version of JSON Schema, codenamed 2020-12, was published on

8https://json-schema.org/learn/getting-started-step-by-step.html
9https://web.archive.org/web/20071027072650/http://xucia.com

10https://web.archive.org/web/20071026185558/http://www.json.com/author/kriszyp/
11https://web.archive.org/web/20071026190426/http://www.json.com/2007/09/27/json-schema-

proposal-collaboration/
12http://www.openajax.org
13https://web.archive.org/web/20071026185150/http://json.com/json-schema-proposal/
14https://web.archive.org/web/20071027182021/http://www.json.com/2007/10/02/json-schema-

proposal-rfc/
15https://web.archive.org/web/20080324120207/http://www.kuwata-lab.com/kwalify/
16https://web.archive.org/web/20080725083720/http://www.json-schema.org/
17https://groups.google.com/g/json-schema
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December 2020 [159]. In early 2022, JSON Schema joined the OpenJS Foundation 18. JSON Schema is currently
an active open-source organization led by Ben Hutton. Ben Hutton is currently employed by Postman 19, a popular
software company that provides API-related services.

At present, JSON Schema is a draft specification that has not obtained standard status. However, JSON Schema
is the de-facto industry-standard schema language for JSON documents. As an example of JSON Schema popularity
across industries, the NSA (National Security Agency) publishes security guidance for the use of JSON Schema 20.
In comparison to JSON Schema, other schema languages for JSON such as JSound [3], CUE [142], and JSON Type
Definition [30] have not reached widespread use. The JSON Schema website 21 lists dozens of open-source JSON
Schema implementations and related tooling written in more than 15 programming languages. As a notable example,
in 2020, the AJV JSON Schema implementation was awarded a grant from Mozilla to sponsor its development 22.
During the same year, AJV also joined the OpenJS Foundation 23, as it has been identified as a key component in the
web and JavaScript [47] ecosystems.

3.2.2 Use Cases
Due to the popularity of JSON [46], JSON Schema is adopted across industries. JSON Schema was originally
designed to describe the structure of JSON documents for validation purposes. However, JSON Schema is now also
used for innovative use cases beyond data validation such as API formal definitions [9] [157] [48] [126] [13] [107],
UI generation 24 25, databases [62] [84] 26 27 28 29 30 and code-generation 31 32 33 34 35 36 37 38.

3.2.3 Characteristics

3.2.3.1 Expressiveness

Compared to other schema definition languages, the JSON Schema official specifications [159] [160] support a wide
range of keywords to produce detailed data models. As noted by [111], [93] and [68], JSON Schema is a particularly
expressive schema language. For example, JSON Schema supports arbitrarily nested and free-form objects and
arrays, boolean logical operators, union data values, conditionals, external dependencies, property dependencies, and
recursive schemas. Refer to Figure 3.4 for an example. In fact, JSON Schema is expressive enough to describe itself.
A JSON Schema document that describes another JSON Schema document is referred to as a meta-schema. [111]
provide a formal definition of the semantics and expressiveness of the now obsolete JSON Schema Draft 4 [51] and
explore the theoretical aspects of the schema validation problem. They conclude that JSON Schema can represent a
large set of problems as its operators can simulate finite state automata, simulate their containment, and simulate tree
automata. More recent versions of JSON Schema introduced more advanced keywords that had not been considered
in research yet. [93] conducted an empirical analysis of how JSON Schema is used in the industry and found that
JSON Schema documents can become overly large (over 119K LoC), that recursion is not common in practice outside

18https://openjsf.org/blog/2022/01/31/json-schema-joins-openjs-foundation/
19https://blog.postman.com/ben-hutton-joins-postman-to-lead-json-schema-strategy/
20https://apps.nsa.gov/iaarchive/library/reports/security_guidance_for_json.cfm
21https://json-schema.org/implementations.html
22https://ajv.js.org/news/2020-08-14-mozilla-grant-openjs-foundation.html
23https://openjsf.org/blog/2020/08/14/ajv-joins-openjs-foundation-as-an-incubation-project/
24https://github.com/rjsf-team/react-jsonschema-form
25https://github.com/ui-schema/ui-schema
26https://better.engineering/jsonschema2db/
27https://github.com/gavinwahl/postgres-json-schema
28https://docs.mongodb.com/manual/core/schema-validation/
29https://docs.mongodb.com/manual/reference/operator/query/jsonSchema/
30https://github.com/mbroadst/thinkagain
31https://github.com/YousefED/typescript-json-schema
32https://github.com/victools/jsonschema-generator
33https://github.com/andyglow/scala-jsonschema
34https://github.com/dragonwasrobot/json-schema-to-elm
35https://github.com/pwall567/json-kotlin-schema-codegen
36https://github.com/swaggest/php-code-builder
37https://github.com/Marwes/schemafy/
38https://statham-schema.readthedocs.io
39https://github.com/json-schema-org/JSON-Schema-Test-Suite/blob/eaa5bffc22658ebc96bb0f3f044fca8be82afc63/

tests/draft2020-12/ref.json#L273-L360
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Figure 3.4: On the left, a JSON Schema [159] definition adapted from the official test suite 39 that uses recursive
references between schemas to validate arbitrary N-ary tree data structures consisting of real numbers. On the right,
an example matching instance.

the definition of meta-schemas and that most schemas are open-ended and allow the presence of extra properties not
declared in the schema.

In order to mitigate the complexity of JSON Schema for newcomers, the JSON Schema specification lead men-
tions the idea of defining the smallest possible subset of JSON Schema that caters to the most common use cases
based on data collected by popular implementations of JSON Schema [132].

3.2.3.2 Flexibility

The keywords supported by the JSON Schema specifications [159] [160] are used to annotate or impose constrains
over the instances that validate against the given schema. The JSON Schema specification does not make any of
its keywords required. Therefore, every possible constrain supported by JSON Schema is opt-in as exemplified in
Figure 3.5. As a consequence, JSON Schema definitions may be strict or loose depending on the schema author
and the problem domain. For example, a JSON Schema definition may meticulously describe each property of its
instances and provide an extensive amount of constrains. Or as an extreme example, a JSON Schema definition may
impose no constrains and behave like the wildcard schema that validates every JSON [46] document. For this reason,
the JSON Schema specification lead describes JSON Schema as a constrains language rather than as a modelling
language [132]. This flexibility can be used to write schema definitions that follow a hybrid approach: provide
detailed models of certain parts of the data structure, while leaving other parts of the data structure open to free-form
extension.
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Figure 3.5: A series of JSON Schema definitions where each subsequent definition adds an additional keyword
highlighted in red. The presence of each additional keyword imposes one further constrain to the set of matching
instances as described in the right.

3.2.3.3 Extensibility

The JSON Schema format has been designed with extensibility in mind. The JSON Schema Core specification [159]
describes the foundational keywords that must be supported by any JSON Schema implementation and introduces a
mechanism called vocabularies, through which implementations can define and use additional groups of keywords
as exemplified in Figure 3.6. In fact, JSON Schema itself makes use of this mechanism to divide the set of keywords
it defines on the official specifications [159] [160] into logical groups that can be mixed and matched by the schema
author. Additionally, the concept of a meta-schema, a JSON Schema that validates other JSON Schema definitions,
can be used to impose arbitrary restrictions on schema definitions. For example, a meta-schema may declare that a
JSON Schema can only describe and validate numeric data structures.
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Figure 3.6: An example of extending JSON Schema with a custom vocabulary adapted from [159]. This JSON
Schema meta-schema definition enables instances to use the keywords defined by the official Core, Applicator and
Validation vocabularies introduced in [159] and [160]. Additionally, it enables instances to use the keywords defined
by the fictitious vocabulary https://example.com/vocab/example-vocab. The meta-schema validates
the keywords introduced by each declared vocabulary by stating that instances must successfully validate against the
meta-schema of every declared vocabulary.
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4.1 The SchemaStore Dataset

SchemaStore 1 is an Apache-2.0-licensed 2 open-source collection of over 300 JSON Schema [158] documents which
describe popular JSON-based [46] formats such as CityJSON [141] and JSON Patch [25]. The SchemaStore API
can be integrated with code editors to offer auto-completion and validation when writing JSON documents. The
SchemaStore project was started by Mads Kristensen 3 in 2014 while working as a Senior Program Manager focused
on the Visual Studio IDE at Microsoft. For the purpose of benchmarking, I will make use of SchemaStore’s extensive
test suite which consists of over 400 real-world JSON documents matching the respective schemas 4. This paper
refers to the commit hash 0b6bd2a08005e6f7a65a68acaf3064d6e2670872 of the SchemaStore repository
hosted on GitHub 5. I believe that the SchemaStore test suite is a good representation of the set of JSON documents
used across industries.

Figure 4.1: An example JSON Schema Draft 4 [51] document from SchemaStore 6 that describes an Apple Associ-
ated Domain file 7 to associate an iOS app and a website.

1https://www.schemastore.org
2http://www.apache.org/licenses/LICENSE-2.0.html
3https://github.com/madskristensen
4https://github.com/SchemaStore/schemastore/tree/master/src/test
5https://github.com/SchemaStore/schemastore
6https://github.com/SchemaStore/schemastore/blob/0b6bd2a08005e6f7a65a68acaf3064d6e2670872/src/

schemas/json/apple-app-site-association.json
7https://developer.apple.com/documentation/safariservices/supporting_associated_domains
8https://github.com/SchemaStore/schemastore/blob/0b6bd2a08005e6f7a65a68acaf3064d6e2670872/src/

test/apple-app-site-association/apple-app-site-association_getting-started.json
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Figure 4.2: An example JSON [46] document that matches the schema definition from Figure 4.1 taken from Schema-
Store’s test suite 8.
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4.2 Taxonomy Definition
Serializing two data structures that match the same schema definition but consist of different values is likely to
result in similar byte sizes. However, serializating two data structures with the same values but different structures
may produce diverse results, even when utilising the same serialization specification. Therefore, I conclude that the
structure and the type of content affects the size of the serialized bit-strings more than the actual values. Under this
assumption, to produce a representative size benchmark, it is essential to measure binary serialization specifications
using a set of JSON [46] documents that differ in structure, type of content and size.

To solve the input data selection problem, it is required to have a process to categorize JSON [46] documents
depending on such characteristics. In this way, I present a taxonomy consisting of 36 categories listed in Table 4.1.
The taxonomy qualifies JSON documents based on their size, type of content, nesting, structural, and redundancy
characteristics. While most JSON documents in practice are objects or arrays, this taxonomy is also applicable to
JSON documents consisting of single scalar values and strings. I hope that this taxonomy forms a common basis to
talk about JSON documents in a high-level manner beyond the benchmarking problem.

4.2.1 Size
In order to categorize JSON documents in a sensible manner using a small set of size categories, I first calculate the
byte-size distribution of the JSON documents in the SchemaStore test suite introduced in section 4.1. The results are
illustrated in Figure 4.4. Based on these results, I group JSON documents into three categories:

• Tier 1 Minified < 100 bytes. A JSON document is in this category if its UTF-8 [38] minified form occupies
less than 100 bytes [151].

• Tier 2 Minified ≥ 100 < 1000 bytes. A JSON document is in this category if its UTF-8 [38] minified form
occupies 100 bytes or more, but less than 1000 bytes [151].

• Tier 3 Minified ≥ 1000 bytes. A JSON document is in this category if its UTF-8 [38] minified form occupies
1000 bytes or more [151].

Figure 4.3: The UTF-8 [38] byte-size of a JSON document in minified form can be determined using a Node.js
9 interactive REPL session by combining the JSON.stringify and the Buffer.byteLength functions as
demonstrated in this figure. In this example, I determine the size of the JSON document { "foo": "bar" } to
be 13 bytes.

4.2.2 Content Type
The taxonomy categorises a JSON document based on the data types that dominate its content. I calculate this
characteristic based on the number of values of a certain data type that a JSON document contains and the byte-size
that these data values occupy in the serialized bit-string. I take both of these measures into account as serializing
many small instances result in more metadata overhead than serializing a few large instances for a given type.

9https://nodejs.org/
10https://github.com/SchemaStore/schemastore/blob/0b6bd2a08005e6f7a65a68acaf3064d6e2670872/src/

test/sarif/BinSkim.AllRules.sarif.json

27

https://nodejs.org/
https://github.com/SchemaStore/schemastore/blob/0b6bd2a08005e6f7a65a68acaf3064d6e2670872/src/test/sarif/BinSkim.AllRules.sarif.json
https://github.com/SchemaStore/schemastore/blob/0b6bd2a08005e6f7a65a68acaf3064d6e2670872/src/test/sarif/BinSkim.AllRules.sarif.json


University of Oxford Kellogg College

The JSON [46] serialization specification supports the following data types: object, array, boolean, string, num-
ber, and null. I consider objects and arrays to represent structural values, strings to represent textual values, and
numbers to represent numeric values. For simplicity, I consider true, false, and null to represent boolean values as in
three-valued logic [116]. I use this data type categorization to define the textual weight, numeric weight, and boolean
weight for a given JSON document.

The weight metrics for a JSON document are based on a common formula where C is the total number of data
values in the JSON document and S is the total byte-size of the JSON document in minified form [151]:

Table 4.1: There are 36 categories defined in my JSON documents taxonomy. The second column contains acronyms
for each category name. In terms of size, a JSON document can either be Tier 1 Minified < 100 bytes, Tier 2 Minified
≥ 100 < 1000 bytes, or Tier 3 Minified ≥ 1000 bytes. In terms of content, a JSON document can either be numeric,
textual, or boolean. Finally, in terms of structure, a JSON document can either be flat or nested.

Category Acronym

Tier 1 Minified < 100 bytes Numeric Redundant Flat Tier 1 NRF
Tier 1 Minified < 100 bytes Numeric Redundant Nested Tier 1 NRN
Tier 1 Minified < 100 bytes Numeric Non-Redundant Flat Tier 1 NNF
Tier 1 Minified < 100 bytes Numeric Non-Redundant Nested Tier 1 NNN
Tier 1 Minified < 100 bytes Textual Redundant Flat Tier 1 TRF
Tier 1 Minified < 100 bytes Textual Redundant Nested Tier 1 TRN
Tier 1 Minified < 100 bytes Textual Non-Redundant Flat Tier 1 TNF
Tier 1 Minified < 100 bytes Textual Non-Redundant Nested Tier 1 TNN
Tier 1 Minified < 100 bytes Boolean Redundant Flat Tier 1 BRF
Tier 1 Minified < 100 bytes Boolean Redundant Nested Tier 1 BRN
Tier 1 Minified < 100 bytes Boolean Non-Redundant Flat Tier 1 BNF
Tier 1 Minified < 100 bytes Boolean Non-Redundant Nested Tier 1 BNN

Tier 2 Minified ≥ 100 < 1000 bytes Numeric Redundant Flat Tier 2 NRF
Tier 2 Minified ≥ 100 < 1000 bytes Numeric Redundant Nested Tier 2 NRN
Tier 2 Minified ≥ 100 < 1000 bytes Numeric Non-Redundant Flat Tier 2 NNF
Tier 2 Minified ≥ 100 < 1000 bytes Numeric Non-Redundant Nested Tier 2 NNN
Tier 2 Minified ≥ 100 < 1000 bytes Textual Redundant Flat Tier 2 TRF
Tier 2 Minified ≥ 100 < 1000 bytes Textual Redundant Nested Tier 2 TRN
Tier 2 Minified ≥ 100 < 1000 bytes Textual Non-Redundant Flat Tier 2 TNF
Tier 2 Minified ≥ 100 < 1000 bytes Textual Non-Redundant Nested Tier 2 TNN
Tier 2 Minified ≥ 100 < 1000 bytes Boolean Redundant Flat Tier 2 BRF
Tier 2 Minified ≥ 100 < 1000 bytes Boolean Redundant Nested Tier 2 BRN
Tier 2 Minified ≥ 100 < 1000 bytes Boolean Non-Redundant Flat Tier 2 BNF
Tier 2 Minified ≥ 100 < 1000 bytes Boolean Non-Redundant Nested Tier 2 BNN

Tier 3 Minified ≥ 1000 bytes Numeric Redundant Flat Tier 3 NRF
Tier 3 Minified ≥ 1000 bytes Numeric Redundant Nested Tier 3 NRN
Tier 3 Minified ≥ 1000 bytes Numeric Non-Redundant Flat Tier 3 NNF
Tier 3 Minified ≥ 1000 bytes Numeric Non-Redundant Nested Tier 3 NNN
Tier 3 Minified ≥ 1000 bytes Textual Redundant Flat Tier 3 TRF
Tier 3 Minified ≥ 1000 bytes Textual Redundant Nested Tier 3 TRN
Tier 3 Minified ≥ 1000 bytes Textual Non-Redundant Flat Tier 3 TNF
Tier 3 Minified ≥ 1000 bytes Textual Non-Redundant Nested Tier 3 TNN
Tier 3 Minified ≥ 1000 bytes Boolean Redundant Flat Tier 3 BRF
Tier 3 Minified ≥ 1000 bytes Boolean Redundant Nested Tier 3 BRN
Tier 3 Minified ≥ 1000 bytes Boolean Non-Redundant Flat Tier 3 BNF
Tier 3 Minified ≥ 1000 bytes Boolean Non-Redundant Nested Tier 3 BNN
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K×100
C × B×100

S

100
(4.1)

• Textual Weight. In this case, K is the number of string values in the JSON document and B is the cummulative
byte-size occupied by the string values in the JSON document. The double quotes surrouding string values are
considered part of the byte-size occupied by a string. Therefore, a string value encoded in a UTF-8 [38] JSON
document occupies at least 2 + N bytes where N corresponds to number of code-points in the string.

• Numeric Weight. In this case, K is the number of numeric values in the JSON document and B is the cum-
mulative byte-size occupied by the numeric values in the JSON document. Each numeric digit and auxiliary
characters such as the minus sign (−) and the period (.) for representing real numbers count towards the
byte-size of the numeric value.

• Boolean Weight. In this case, K is the number of boolean values in the JSON document and B is the cum-
mulative byte-size occupied by the boolean values in the JSON document. The UTF-8 [38] JSON encoding
represents true using 4 bytes, false using 5 bytes, and null using 4 bytes.

I rely on the previous weight definitions to provide the content type taxonomy for JSON documents based on
whether they are textual, numeric, or boolean. Given an input JSON document, consider Wt, Wn, and Wb to represent
its textual, numeric and boolean weights, respectively:

• Textual. A JSON document is textual if Wt ≥ Wn ≥ Wb.

• Numeric. A JSON document is numeric if Wn ≥ Wt ≥ Wb.

• Boolean. A JSON document is numeric if Wb ≥ Wt ≥ Wn.

If two or more of the content type weight values are equal and greater than the rest, such JSON document is
considered to hold more than one type of content qualifier. For example, if Wt = Wn and Wt > Wb, then the JSON
document is equally considered textual and numeric.

The results of executing this aspect of the taxonomy on the SchemaStore test suite introduced in section 4.1 are
shown in Figure 4.5.

Figure 4.4: The byte-size distribution (in 100 byte groups up to 8000 bytes for illustration purposes) of the 480 JSON
documents present in the SchemaStore test suite introduced in section 4.1. Most JSON documents weigh less than
1000 bytes. The largest JSON document weighs 545392 bytes 10.
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4.2.3 Redundancy
The taxonomy measures redundancy as the percentage of values in a given JSON document that are duplicated taking
scalar and composite data types into account.

In comparison to schema-less serialization formats, schema-driven serialization formats make use of schema
definitions to avoid encoding object keys. This taxonomy is designed to aid in categorizing JSON documents based
on characteristics that impact data serialization. For these reasons, the number of duplicated object keys in the
redundancy metric is irrelevant for the schema-driven subset of the selection of binary serializion formats and is not
taken into account.

Let JSON be the set of JSON documents as defined in the data model introduced by [18] with the exception that
the [∗] object operator results in a sequence, instead of a set, of values in the given JSON object. Consider a new [&]
operator defined using the Z formal specification notation [78] that results in the flattened sequence of atomic and
compositional structure values of the given JSON document:

[&] : JSON → seq JSON

∀ J : JSON •
J[&] = 〈J〉a J[∗][0][&]a ...a J[∗][#J][&] if J is an object
J[&] = 〈J〉a J0[&]a J′[&] if J is an array
J[&] = 〈J〉 otherwise

Using this operator, RJ is defined as the percentage of duplicate values in the JSON document J:

RJ =
(#J[&]−#{v | v in J[&]})× 100

#J[&]
(4.2)

In order to categorize JSON documents in a sensible manner, the taxonomy distinguishes between redundant
JSON documents and non-redundant JSON documents. The redundancy distribution of the JSON documents in the
SchemaStore test suite introduced in section 4.1 is computed in Figure 4.6. Using these results, this taxonomy aspect
is defined as follows:

• Redundant. A JSON document J is redundant if RJ ≥ 25%

• Non-Redundant. A JSON document J is redundant if RJ < 25%

11https://github.com/SchemaStore/schemastore/blob/0b6bd2a08005e6f7a65a68acaf3064d6e2670872/src/

Figure 4.5: Out of the 480 JSON documents in the SchemaStore test suite introduced in section 4.1, 446 are textual,
21 are boolean, and 13 are numeric.
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4.2.4 Structure
[18] propose that connected acyclic undirected graphs which resembles a tree structure are a natural representation
for JSON documents as exemplified in Figure 4.7. I use the following definitions for two features associated with
trees: height and level.

Definition 1. The height of a node is the number of edges on the longest downward path between that node and a
leaf. The height of a tree is the height of its root.

Definition 2. The level of a node is defined by 1 + the number of connections between the node and the root. The

test/csslintrc/WebAnalyzer.json

Figure 4.6: Distribution representing redundant values. First, I calculate the percentage of redundant values of the 480
JSON documents present in the SchemaStore test suite introduced in section 4.1 and second, I count them by 2.5%
redundant values groups as follows: 2.5%, 5%, 7.5% and so on. Most JSON documents are strictly non-redundant.
However there are instances of almost every 2.5% redundancy groups in the plot. The most redundant JSON document
has a value redundancy of 88.8% 11.

Figure 4.7: An example JSON document and its corresponding connected acyclic undirected graph representation.
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level is depth + 1.

Using the definition of height, I extrapolate that the height of the tree determines the height of a given JSON
document. Using the definition of level, I extrapolate that the size of a level in the tree equals the sum of the byte-size
of every textual, numeric, and boolean values whose nodes have the corresponding level. Therefore, the largest level
is the level with the highest size without taking into account the subtree at depth 0.

The nesting weight of a JSON document J, referred to as NJ , is defined as the product of its height and largest
level minus 1. I do not consider the byte-size overhead introduced by compositional structures (object and array) in
the JSON document as I found that it is highly correlated to its nesting characteristics.

NJ = height× largest level− 1 (4.3)

In order to categorize JSON documents in a sensible manner, the taxonomy distinguishes between flat JSON
documents and nested JSON documents. The nesting weight distribution of the JSON documents in the SchemaStore
test suite introduced in section 4.1 is computed in Figure 4.8. Using those results, this taxonomy aspect is defined as
follows:

• Flat. A JSON document J is flat if NJ less than the empirically-derived threshold integer value 10.

• Nested. A JSON document J is nested if NJ is greater than or equal to the empirically-derived threshold integer
value 10.

Figure 4.8: The nesting weight distribution of the 480 JSON documents present in the SchemaStore test suite intro-
duced in section 4.1 grouped by the empirically-derived threshold 5. Most JSON documents have a nesting weight of
under 20. However, there are JSON documents with a nesting weight of up to 100 12.

4.2.5 Demonstration
To demonstrate my conceptual taxonomy, I apply it to the JSON document listed in Figure 4.9. Table 4.2 provides a
breakdown of this JSON document including information such as the number of edges and byte size of every valid
JSON Pointer path [26]. This document is a Tier 2 Minified≥ 100 < 1000 bytes, numeric, non-redundant, and nested
(SNNN according to Table 4.1) JSON document:

12https://github.com/SchemaStore/schemastore/blob/0b6bd2a08005e6f7a65a68acaf3064d6e2670872/src/
test/cloudify/utilities-cloudinit-simple.json

32

https://github.com/SchemaStore/schemastore/blob/0b6bd2a08005e6f7a65a68acaf3064d6e2670872/src/test/cloudify/utilities-cloudinit-simple.json
https://github.com/SchemaStore/schemastore/blob/0b6bd2a08005e6f7a65a68acaf3064d6e2670872/src/test/cloudify/utilities-cloudinit-simple.json


University of Oxford Kellogg College

Figure 4.9: An example Tier 2 Minified ≥ 100 < 1000 bytes, numeric, non-redundant, and nested JSON document
taken from my previous work [151]. The annotations at the left highlight each level in the JSON document. The
height of this document is (5− 1 = 4) (the highest level minus 1).

• Tier 2 Minified≥ 100 < 1000 bytes. The size of the JSON document is 184 bytes. 184 is greater than 100 but
less than 1000, therefore the JSON document from Figure 4.9 is Tier 2 Minified ≥ 100 < 1000 bytes according
to the taxonomy.

• Numeric. Table 4.2 shows that the JSON document has 24 values corresponding to its set of valid JSON
Pointer [26] paths. Of those, 7 (29.16%) are numeric, 3 (12.5%) are textual, and 4 (16.66%) are boolean.
Out of the 184 total bytes from the JSON document, 24 bytes (13.04%) correspond to numeric values, 14
bytes (7.60%) correspond to textual values, and 17 bytes (9.23%) correspond to boolean values. The numeric
weight is 29.16× 13.04/100 = 3.80, the textual weight is 12.5× 7.60/100 = 0.95, and the boolean weight is
16.66× 9.23/100 = 1.53. 3.80 is greater than 0.95 and 1.53, therefore the JSON document from Figure 4.9 is
numeric according to the taxonomy.

• Non-Redundant. The JSON document consists of 24 values. Out of those, the numeric value 1 appears
in the JSON Pointer [26] paths /days/0, /days/1, and /days/2. The textual value ox03 appears at
/data/0/name and /data/2/name. Similarly, the boolean value true appears at /data/0/staff and
/data/2/staff. Furthermore, the objects /data/0 and /data/2 are equal. Therefore, only 19 out of
the 24 values in the JSON document are unique. I conclude that only 5 (20.83%) of its values are redundant, so
the JSON document from Figure 4.9 is non-redundant according to the taxonomy.

• Nested. The height is 4, awarded to the pointer /data/1/extra/info. I calculate the byte-size of each
level by adding the byte-size of each non-structural value in such level. Level 2 occupies 6 bytes, level 3
occupies 18 bytes, level 4 occupies 29 bytes and level 5 occupies 2 bytes. Therefore, level 4 is the largest level.
The nesting weight of the JSON document is 4× (4− 1) = 12 (the height multiplied by the largest level minus
1). 12 is greater than 10, therefore the JSON document from Figure 4.9 is nested according to the taxonomy.

4.2.6 JSON Stats Analyzer
I built and published a free-to-use online tool at https://www.jsonbinpack.org/stats/ to automatically
categorize JSON documents according to the taxonomy defined in this section and provide summary statistics. Fig-
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Table 4.2: A breakdown of the JSON document from Figure 4.9 in terms of its valid JSON Pointer [26] paths, value
type, level , byte-size, and redundancy.

JSON Pointer Type Level Byte-size Same As

/ Structural 1 184
/tags Structural 2 2
/tz Numeric 2 6
/days Structural 2 9
/days/0 Numeric 3 1 /days/1,

/days/3
/days/1 Numeric 3 1 /days/0,

/days/3
/days/2 Numeric 3 1
/days/3 Numeric 3 1 /days/0,

/days/1
/coord Structural 2 17
/coord/0 Numeric 3 8
/coord/1 Numeric 3 6
/data Structural 2 110
/data/0 Structural 3 28 /data/2
/data/0/name Textual 4 6 /data/2/name
/data/0/staff Boolean 4 4 /data/2/staff
/data/1 Structural 3 47
/data/1/name Boolean 4 4
/data/1/staff Boolean 4 5
/data/1/extra Structural 4 11
/data/1/extra/info Textual 5 2
/data/2 Structural 3 28 /data/0
/data/2/name Textual 4 6 /data/0/name
/data/2/staff Boolean 4 4 /data/0/staff
/data/3 Structural 3 2

ure 4.10 demonstrates the summary statistics analyzed for the Tier 2 Minified ≥ 100 < 1000 bytes, numeric, non-
redundant, and nested JSON document from Figure 4.9.

The tool is developed using the TypeScript 13 programming language, the CodeMirror 14 open-source embeddable
web editor, and the Tailwind CSS 15 open-source web component framework. The web application is deployed to the
GitHub Pages 16 free static-hosting service.

13https://www.typescriptlang.org
14https://codemirror.net
15https://tailwindcss.com
16https://pages.github.com
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Figure 4.10: A screenshot of the online tool published at https://www.jsonbinpack.org/stats/ analyz-
ing the JSON document listed in Figure 4.9.

Discussion. The document under analysis in Figure 4.10 is displayed in the embedded text editor on the left side
of the screen. The analysis results are present on the right side of the screen and are generated after pressing the
red Analyze button on the top right corner. The Taxonomy section of the analysis table shows that the document is
a Tier 2 Minified ≥ 100 < 1000 bytes, numeric, non-redundant, and nested document according to the taxonomy.
The Summary section shows the intermediary results of the size, content type, redundancy and structural statistics
introduced in subsection 4.2.1, subsection 4.2.2, subsection 4.2.3 and subsection 4.2.4, respectively. The Full Analysis
section shows all the intermediary values used throughout every calculation.

35

https://www.jsonbinpack.org/stats/


5 | Methodology

5.1 Study of JSON-compatible Binary Serialization Specifications

5.1.1 Approach
My approach to extend the body of literature through meticulous study of JSON-compatible binary serialization
specifications is based on the following methodology. While several serialization specifications have characteristics
outside of the context of JSON [21], the scope of this study is limited to those characteristics that are relevant for
encoding JSON documents.

1. Identify JSON-compatible Binary Serialization Specifications. Research and select a set of schema-driven
and schema-less JSON-compatible binary serialization specifications.

2. Craft a JSON Test Document. Design a sufficiently complex yet succinct JSON document in an attempt to
highlight the challenges of encoding JSON data. This JSON document is referred to as the input data.

3. Write Schemas for the Schema-driven Serialization Specifications. Present schemas that describe the input
data for each of the selected schema-driven serialization specifications. The schemas are designed to produce
space-efficient results given the features documented by the corresponding specifications.

4. Serialize the JSON Test Document. Serialize the input data using each of the selected binary serialization
specifications.

5. Analyze the Bit-strings Produced by Each Serialization Specification. Study the resulting bit-strings and
present annotated hexadecimal diagrams that guide the reader in understanding the inner workings of each
binary serialization specification.

6. Discuss the Characteristics of Each Serialization Specification. For each selected binary serialization spec-
ification, discuss the characteristics, advantages and optimizations that are relevant in the context of serializing
JSON [46] documents.

5.1.2 Serialization Specifications
I selected a set of general-purpose schema-driven and schema-less serialization specifications that are popular within
the open-source community. Some of the selected schema-driven serialization specifications support more than one
type of encoding. In these cases, I chose the most space-efficient encoding. The implementations used in this
study are freely available under open-source licenses with the exception of ASN.1 [123], for which a proprietary
implementation is used. The choice of JSON-compatible serialization specifications, the selected encodings and the
respective implementations are documented in Table 5.1 and Table 5.2.

Table 5.1: The schema-driven binary serialization specifications, encodings and implementations discussed in this
study.

Specification Implementation Encoding

ASN.1 OSS ASN-1Step Version 10.0.1 (proprietary) PER Unaligned [124]
Apache Avro Python avro (pip) 1.10.0 Binary Encoding 1with no framing
Microsoft Bond C++ library 9.0.3 Compact Binary v1 2

Cap’n Proto capnp command-line tool 0.8.0 Packed Encoding 3

FlatBuffers flatc command-line tool 1.12.0 Binary Wire Format 4

Protocol Buffers Python protobuf (pip) 3.13.0 Binary Wire Format 5

Apache Thrift Python thrift (pip) 0.13.0 Compact Protocol 6

1https://avro.apache.org/docs/current/spec.html#binary_encoding
2https://microsoft.github.io/bond/reference/cpp/compact__binary_8h_source.html
3https://capnproto.org/encoding.html#packing
4https://google.github.io/flatbuffers/flatbuffers_internals.html
5https://developers.google.com/protocol-buffers/docs/encoding
6https://github.com/apache/thrift/blob/master/doc/specs/thrift-compact-protocol.md
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Figure 5.1: The binary serialization specifications discussed in this study divided by whether they are purely JSON
compatible (center), whether they consider JSON compatibility but are a superset of JSON (right), or whether I found
them to be JSON compatible but that’s not one of their design goals (left).

As part of this study, I chose not to discuss serialization specifications that could not encode the input data JSON
document from Figure 5.2 without significant changes, such as Simple Binary Encoding (SBE) 7 and Apple’s Binary
Property List (BPList) 8 or that could not be considered general-purpose serialization specifications, such as Java
Object Serialization 9 and YAS 10. I also chose not to discuss serialization specifications that remain unused in the
industry at present, such as PalCom Object Notation (PON) [100] and as a consequence lack a well-documented and
usable implementation, such as SJSON [4] and the JSON-B, JSON-C and JSON-D family of schema-less serialization
specifications [69].

5.1.3 Input Data
I designed a test JSON [46] document that is used to showcase the challenges of serializing JSON [46] data and
attempt to highlight the interesting aspects of each selected serialization specification. The JSON document I created,
presented in Figure 5.2, has the following characteristics:

7https://github.com/real-logic/simple-binary-encoding
8https://opensource.apple.com/source/CF/CF-550/CFBinaryPList.c
9https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html

10https://github.com/niXman/yas

Table 5.2: The schema-less binary serialization specifications, encodings and implementations discussed in this study.

Specification Implementation

BSON Python bson (pip) 0.5.10
CBOR Python cbor2 (pip) 5.1.2
FlexBuffers flatc command-line tool 1.12.0
MessagePack json2msgpack command-line tool 0.6 with MPack 0.9dev
Smile Python pysmile (pip) 0.2
UBJSON Python py-ubjson (pip) 0.16.1
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Figure 5.2: The JSON test document that will be used as a basis for analyzing various binary serialization specifica-
tions.

• It contains an empty array, an empty object, and an empty string.

• It contains nested objects and homogeneous and heterogeneous arrays.

• It contains an array of scalars with and without duplicate values.

• It contains an array of composite values with and without duplicate values.

• It contains a set and an unset nullable string.

• It contains positive and negative integers and floating-point numbers.

• It contains true and false boolean values.

The input data is not representative of every JSON document that the reader may encounter in practice. I hope
that the characteristics of the input data and output demonstrate how serialization specifications perform with respect
to various JSON documents.

5.2 Benchmark of JSON-compatible Binary Serialization Specifications

5.2.1 Research Questions
Given the JSON-compatible schema-less and schema-driven binary serialization specifications studied in section 5.1,
this benchmark aims to answer the following set of research questions:

• Q1: How do JSON-compatible schema-less binary serialization specifications compare to JSON in terms of
space-efficiency?

• Q2: How do JSON-compatible schema-driven binary serialization specifications compare to JSON and JSON-
compatible schema-less binary serialization specifications in terms of space-efficiency?
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• Q3: How do JSON-compatible sequential binary serialization specifications compare to JSON-compatible
pointer-based binary serialization specifications in terms of space-efficiency?

• Q4: How does compressed JSON compare to uncompressed and compressed JSON-compatible binary serial-
ization specifications?

5.2.2 Approach
My approach to extend the body of literature through a space-efficiency benchmark of JSON-compatible binary
serialization specifications is based on the following methodology:

1. Input Data. Select a representative set of real-world JSON [46] documents across industries according to the
taxonomy defined in section 4.2.

2. Serialization Specifications. Drawing on research from [151], list the set of JSON-compatible schema-less
and schema-driven binary serialization specifications to be benchmarked along with their respective encodings
and implementations.

3. Compression Formats. Select a set of popular lossless data compression formats along with their respective
implementations. These compression formats will be used to compress the input JSON [46] documents and
bit-strings generated by the selection of binary serialization formats.

4. Schema Definitions. Write schema definitions for each combination of input JSON [46] document and selected
schema-driven binary serialization specification.

5. Benchmark. Serialize each JSON [46] document using the selection of binary serialization specifications.
Then, deserialize the bit-strings and compare them to the original JSON [46] documents to test that there is no
accidental loss of information.

6. Results. Measure the byte-size of the JSON [46] documents and bit-strings generated by each binary serializa-
tion specification in uncompressed and compressed form using the selection of data compression formats.

7. Conclusions. Discuss the results to identify space-efficient JSON-compatible binary serialization specifications
and the role of data compression in increasing space-efficiency of JSON [46] documents.

5.2.3 Input Data
Figure 5.3 categorizes the JSON [46] documents from the SchemaStore test suite introduced in section 4.1 according
to the taxonomy defined in section 4.2. The SchemaStore test suite does not contain JSON [46] documents that match
9 out of the 36 categories defined in the taxonomy, particularly in the Tier 3 Minified ≥ 1000 bytes size category
which is dominated by textual JSON documents. I embrace these results to conclude that the missing categories do
not represent instances of JSON [46] documents that are commonly encountered in practice. The missing categories
are the following:

• Tier 2 Minified ≥ 100 < 1000 bytes Numeric Redundant Flat (SNRF)

• Tier 2 Minified ≥ 100 < 1000 bytes Boolean Redundant Nested (SBRN)

• Tier 2 Minified ≥ 100 < 1000 bytes Boolean Non-Redundant Nested (SBNN)

• Tier 3 Minified ≥ 1000 bytes Numeric Redundant Nested (LNRN)

• Tier 3 Minified ≥ 1000 bytes Numeric Non-Redundant Flat (LNNF)

• Tier 3 Minified ≥ 1000 bytes Numeric Non-Redundant Nested (LNNN)

• Tier 3 Minified ≥ 1000 bytes Boolean Redundant Nested (LBRN)

• Tier 3 Minified ≥ 1000 bytes Boolean Non-Redundant Flat (LBNF)
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• Tier 3 Minified ≥ 1000 bytes Boolean Non-Redundant Nested (LBNN)

I selected a single JSON [46] document from each matching category at random. The selection of JSON docu-
ments is listed in Table 5.3 and Table 5.4. Some JSON [46] documents I selected from the SchemaStore test suite,
namely Entry Point Regulation manifest and .NET Core project.json, include a top level $schema string property that
is not considered in the benchmark. The use of this keyword is a non-standard approach to make JSON [46] docu-
ments reference their own JSON Schema [159] definitions. This keyword is not defined as part of the formats that
these JSON documents represent in the SchemaStore dataset.

Figure 5.3: There are 480 JSON [46] documents present in the SchemaStore test suite. These are grouped according
to the taxonomy defined in section 4.2 using a logarithmic y-scale.
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Table 5.3: The JSON [46] documents selected from the SchemaStore test suite introduced in section 4.1 divided
by industry. Each JSON document matches a different taxonomy category defined in section 4.2. The first column
consists of a brief description of the JSON document. The second column contains the path and link to the test
case file within the SchemaStore repository. The third column contains the taxonomy categories using the acronyms
defined in Table 4.1. This table is continued in Table 5.4.

Description Test Case Name Category

Continuous Integration / Continuous Deliver (CI/CD)
JSON-e templating engine
sort example

jsone/sort.json TNRF

JSON-e templating engine
reverse sort example

jsone/reverse-sort.json TNRN

CircleCI definition (blank) circleciconfig/version-2.0.json TNNF
CircleCI matrix definition circleciconfig/matrix-simple.json TNNN
SAP Cloud SDK Continuous
Delivery Toolkit configura-
tion

cloud-sdk-pipeline-config-schema/empty.json TBRF

TravisCI notifications con-
figuration

travis/notification-secure.json STRF

GitHub Workflow Definition github-workflow/919.json STNN
Software Engineering

Grunt.js "clean" task defini-
tion

grunt-clean-task/with-options.json TTRF

CommitLint configuration commitlintrc/commitlintrc-test5.json TTRN
TSLint linter definition (ex-
tends only)

tslint/tslint-test5.json TTNF

TSLint linter definition
(multi-rule)

tslint/tslint-test25.json TBRN

CommitLint configuration
(basic)

commitlintrc/commitlintrc-test3.json TBNF

TSLint linter definition (ba-
sic)

tslint/tslint-test19.json TBNN

ESLint configuration docu-
ment

eslintrc/WebAnalyzer.json LNRF

NPM Package.json Linter
configuration manifest

npmpackagejsonlintrc/npmpackagejsonlintrc-test.json LTRF

.NET Core project.json project/EF-project.json LTRN
NPM Package.json example
manifest

package/package-test.json LTNF
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Table 5.4: Continuation of Table 5.3.

Description Test Case Name Category

Web
ImageOptimizer Azure Webjob configuration imageoptimizer/default.json TTNN
Entry Point Regulation manifest epr-manifest/official-example.json STRN
ECMAScript module loader definition esmrc/.esmrc .json SBNF
Nightwatch.js Test Framework Configuration nightwatch/default.json LBRF

Geospatial
GeoJSON example JSON document geojson/multi-polygon.json SNRN

Weather
OpenWeatherMap API example JSON document openweather.current/example.json SNNF
OpenWeather Road Risk API example openweather.roadrisk/example.json SNNN

Publishing
JSON Feed example document feed/microblog.json STNF

Open-Source
GitHub FUNDING sponsorship definition (empty) github-funding/ebookfoundation.json SBRF

Recruitment
JSON Resume resume/richardhendriks.json LTNN
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5.2.4 Serialization Specifications
The selection of schema-driven and schema-less JSON-compatible binary serialization specifications is listed in Ta-
ble 5.5 and Table 5.6. In comparison to my previous work [151], I use ASN-1Step 10.0.2 instead of 10.0.1, Microsoft
Bond [96] 9.0.4 instead of 9.0.3, and Protocol Buffers [67] 3.15.3 instead of 3.13.0. None of these version upgrades
involve changes to the encodings. Furthermore, I replaced the third-party BSON [95] Python implementation used
in [151] with the Node.js official MongoDB implementation. I also replaced the Smile [121] Python implementa-
tion used in [151] with a Clojure implementation as I identified issues in the former implementation with respects to
floating-point numbers. For example, encoding the floating-point number 282.55 results in 282.549988 when using
pysmile v0.2.

Finally, both the binary and the packed encoding provided by Cap’n Proto [146] are considered. As described in
[151], the packed encoding consists of a basic data compression format officially supported as a separate encoding.
These encodings are separately considered to understand the impact of general-purpose data compression on the
uncompressed Cap’n Proto [146] variant.

Table 5.5: The selection of schema-driven JSON-compatible binary serialization specifications based on my previous
work [151].

Specification Implementation Encoding License

ASN.1 OSS ASN-1Step Version 10.0.2 PER Unaligned [124] Proprietary
Apache Avro Python avro (pip) 1.10.0 Binary Encoding 11with no framing Apache-2.0
Microsoft Bond C++ library 9.0.4 Compact Binary v1 12 MIT
Cap’n Proto capnp command-line tool 0.8.0 Binary Encoding 13 MIT
Cap’n Proto capnp command-line tool 0.8.0 Packed Encoding 14 MIT
FlatBuffers flatc command-line tool 1.12.0 Binary Wire Format 15 Apache-2.0
Protocol Buffers Python protobuf (pip) 3.15.3 Binary Wire Format 16 3-Clause BSD
Apache Thrift Python thrift (pip) 0.13.0 Compact Protocol 17 Apache-2.0

Table 5.6: The selection of schema-less JSON-compatible binary serialization specifications based on my previous
work [151].

Specification Implementation License

BSON Node.js bson (npm) 4.2.2 Apache-2.0
CBOR Python cbor2 (pip) 5.1.2 MIT
FlexBuffers flatc command-line tool 1.12.0 Apache-2.0
MessagePack json2msgpack command-line tool 0.6 with MPack 0.9dev MIT
Smile Clojure cheshire 5.10.0 MIT
UBJSON Python py-ubjson (pip) 0.16.1 Apache-2.0

5.2.5 Fair Benchmarking
In order to produce a fair benchmark, the resulting bit-strings are ensured to be lossless encodings of the respective
input JSON [46] documents. For some binary serialization specifications such as Cap’n Proto [146], providing a
schema that only describes a subset of the input data will result in only such subset being serialized and the remaining
of the input data being silently discarded. In other cases, a serialization specification may silently coerce an input data

11https://avro.apache.org/docs/current/spec.html#binary_encoding
12https://microsoft.github.io/bond/reference/cpp/compact__binary_8h_source.html
13https://capnproto.org/encoding.html#packing
14https://capnproto.org/encoding.html
15https://google.github.io/flatbuffers/flatbuffers_internals.html
16https://developers.google.com/protocol-buffers/docs/encoding
17https://github.com/apache/thrift/blob/master/doc/specs/thrift-compact-protocol.md
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type to match the schema definition even at the expense of loss of information. For example, Protocol Buffers [67]
may forcefully cast to IEEE 764 32-bit floating-point encoding [60] if requested by the schema even if the input real
number can only be represented without loss of precision by using the IEEE 764 64-bit floating-point encoding [60].

The implemented benchmark program prevents such accidental mistakes by validating that for each combination
of serialization specification listed in subsection 5.2.4 and input JSON document listed in Table 5.3 and Table 5.4, the
produced bit-strings encode the same information as the respective input JSON document. The automated test consists
in serializing the input JSON document using a given binary serialization specification, deserializing the resulting bit-
string and asserting that the original JSON document is strictly equal to the deserialized JSON document.

5.2.6 Compression Formats

Figure 5.4: A general-purpose lossless compressor provides a compression and a decompression process. Compres-
sion consists in transforming the original data into a compressed representation of the same information. Decompres-
sion reverses the compression process to obtain the unmodified original data from its compressed representation.

I selected the following data compression formats: GZIP (GNU ZIP) [44], LZ4 18, and Lempel-Ziv-Markov
Chain Algorithm (LZMA), a set of compressors commonly used in the context of web services. These three formats
are derived from the LZ77 (Lempel-Ziv) [163] dictionary-based coding scheme and are considered general-purpose
lossless compressors [83]. The LZ77 [163] algorithm operates by deduplicating multiple occurrences of the same
data pattern within certain distance [83] [128], a technique also discussed in more detail in [131]. According to [128],
the compression ratios on textual data when using Lempel-Ziv-derived algorithm ranges between 30% and 40% in
practice.

Table 5.7: A high-level view of the differences and similarities between the GZIP, LZ4 and LZMA lossless compres-
sion formats.

Compression Format GZIP LZ4 LZMA

Differences Efficient and constant
memory usage

High compression and de-
compression speed

Better compression on
large files

Similarities Based on LZ77 (Lempel-Ziv) [163]

GZIP (GNU ZIP) [44] is an open-source compressor based on a mixture of the LZ77 [163] and the Huffman
[74] coding schemes. GZIP was developed as part of the GNU Project 19 and released in 1992 as a replacement for
the UNIX compress 20 program. GZIP it is the most widely-used compression format for HTTP/1.1 [56]. [54]

18https://lz4.github.io/lz4/
19https://gnu.org
20https://ncompress.sourceforge.io
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study the problem of compressing large amounts of textual and highly-redundant data such as HTML [52] documents
and use GZIP as the reference compressor due to its popularity. Their findings show that GZIP has been designed
to have a small memory footprint and operate in constant space complexity [128]. These characteristics are possible
given that GZIP splits the input data into small blocks of less than 1 MB and compresses each block separately. As
a drawback, this approach limits GZIP ability to detect redundancy across blocks and reduces its space-efficiency on
larger input data. I consider this drawback to be irrelevant for this benchmark as the largest JSON [21] document
present in the SchemaStore test suite introduced in section 4.1 weights 0.5 MB as discussed in Figure 4.4.

LZ4 is an open-source compressor developed by Yann Collet 21 while working at Facebook. LZ4 is a derivative
of LZ77 [163]. LZ4 focuses on improving compression and decompression speed by using a hash table data structure
for storing reference addresses. The hash table provides constant O(1) instead of linear O(n) complexity for match
detection [10]. LZ4 is a core part of the Zstandard data compression mechanism [37]. Zstandard is one of the eight
compressors, along with GZIP [44], that are part of the IANA HTTP Content Coding Registry 22. LZ4 is also the
recommended data compression format for Cap’n Proto [146] bit-strings 23.

LZMA is an open-source compressor developed as part of the 7-Zip project 24. LZMA offers high compression
ratios as observed by [106] and [54]. LZMA is a dictionary-based compressor based on LZ77 [163] with support for
dictionaries of up to 4 GB in size. As a result, LZMA can detect redundancy across large portions of the input data. In
comparison to GZIP [44], [54] found LZMA to be space-efficient when taking large files as input. Applying LZMA
on their 50 GB and a 440 GB collection of web pages resulted in 4.85% and 6.15% compression ratios compared to
20.35% and 18.69% compression ratios in the case of GZIP. LZMA support is implemented in the Opera web browser
25. Official builds of the Firefox web browser do not include LZMA support. However, there exist non-official patches
26 that can be used to produce a build from source that includes LZMA support.

These data compression formats support multiple compression levels. We are interested in examining the impact
of data compression in the best possible case, so I choose the highest recommended compression level supported by
each format. The implementations, versions and compression levels used for this benchmark are listed in Table 5.8.

Table 5.8: The selection of lossless data compression formats.

Format Implementation Compression Level License

GZIP Apple gzip 321.40.3 (based on
FreeBSD gzip 20150113)

9 27 2-Clause BSD

LZ4 lz4 command-line tool v1.9.3 9 28 Mixed 2-Clause BSD and GPLv2
LZMA xz (XZ Utils) 5.2.5 with liblzma

5.2.5
9 29 Mixed Public Domain and GNU

LGPLv2.1+

5.2.7 System Specification
The implementations of the selected serialization specifications were executed on a MacBook Pro 13" Dual-Core Intel
Core i5 2.9 GHz with 2 cores and 16 GB of memory (model identifier MacBookPro12,1) running macOS Big Sur
11.2.3, Xcode 12.4 (12D4e), clang 1200.0.32.29, GNU Make 3.81, Matplotlib 3.4.2, Awk version 20200816, Python
3.9.2, Node.js 15.11.0, and Clojure 1.10.2.796.

21https://github.com/Cyan4973
22https://www.iana.org/assignments/http-parameters/http-parameters.xhtml#content-coding
23https://capnproto.org/encoding.html#compression
24https://www.7-zip.org
25https://blogs.opera.com/desktop/changelog-for-31/
26https://wiki.mozilla.org/LZMA2_Compression
27https://www.unix.com/man-page/freebsd/0/gzip/
28https://man.archlinux.org/man/lz4.1
29http://manpages.org/xz
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5.3 Design of a JSON-compatible Binary Serialization Specification
My approach to extend the body of literature by introducing a new space-efficient JSON-compatible binary serializa-
tion specification is based on the following methodology:

1. Requirements. Write a requirements specification that describes the functional and non-functional require-
ments of a space-efficient JSON-compatible binary serialization specification. This requirements specification
is meant to capture the essential set of requirements while providing extensive space for experimentation.

2. Characteristics. Drawing on the research from section 5.1 and section 5.2, identify and select the combination
of characteristics and constrains that tend to enable a binary serialization specification to achieve superior
space-efficiency.

3. Architecture. Design and discuss a maintainable software architecture for a JSON-compatible binary serial-
ization specification. The architecture shall be optimized for space-efficiency given the selected characteristics
and constrains and documented using the C4 model [23] software architecture visualization notation.

4. Implementation. Write a proof-of-concept implementation of the JSON-compatible binary serialization spec-
ification designed in the previous steps. The choice of programming language does not affect the space-
efficiency characteristics of the serialization specification. The objective is to provide a proof-of-concept im-
plementation to evaluate the results rather than to provide a production-ready implementation.

5. Benchmark. Compare the space-efficiency characteristics of the new JSON-compatible serialization speci-
fication against the alternative binary serialization specifications considered in section 5.1 by extending the
automated benchmark software introduced by section 5.2.
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6 | A Study of JSON-compatible Binary Serialization Specifica-
tions

For a complete reference, please refer to the paper A Survey of JSON-compatible Binary Serialization Specifications
[151]. In this particular chapter, I focus on one example, the use cases, conclusions and reproducibility sections of
the above paper.

6.1 Analysis Example: ASN.1 PER Unaligned

Figure 6.1: Hexadecimal output (xxd) of encoding Figure 5.2 input data with ASN.1 PER Unaligned (44 bytes).

History. ASN.1 [123] is a standard schema language used to serialize data structures using an extensible set of
schema-driven encoding rules. ASN.1 was originally developed in 1984 as a part of the [122] standard and became a
International Telecommunication Union recommendation and an ISO/IEC international standard [137] in 1988. The
ASN.1 specification is publicly available 1 and there are proprietary and open source implementations of its standard
encoding rules. The ASN.1 PER Unaligned encoding rules were designed to produce space-efficient bit-strings while
keeping the serialization and deserialization procedures reasonably simple.

Characteristics.

• Robustness. ASN.1 is a mature technology that powers some of the highest-integrity communication systems
in the world 2 3 such as the Space Link Extension Services (SLE) [32] communication services for spaceflight
and the LTE S1 signalling service application protocol [1]. Refer to [140] for an example of formal verification
of the encoding/decoding code produced by an ASN.1 PER Unaligned compiler (Galois 4) in the automobile
industry.

• Standardization. In comparison to informally documented serialization specifications, ASN.1 is specified as a
family of ITU Telecommunication Standardization Sector (ITU-T) recommendations and ISO/IEC international
standards and has gone through extensive technical review.

• Flexible Encoding Rules. ASN.1 supports a wide range of standardised encodings for different use cases:
BER (Basic Encoding Rules) based on tag-length-value (TLV) nested structures [125], DER (Distinguished
Encoding Rules) and CER (Canonical Encoding Rules) [125] for restricted forms of BER [125], PER (Packed
Encoding Rules) for space-efficiency [124], OER (Octet Encoding Rules) for runtime-efficiency [136], JER
(JSON Encoding Rules) for JSON encoding [139], and XER (XML Encoding Rules) for XML encoding [138].

Layout. An ASN.1 PER Unaligned bit-string is a sequence of untagged values, sometimes nested where the
ordering of the values is determined by the schema. ASN.1 PER Unaligned encodes values in as few bits as reasonably
possible and does not align values to a multiple of 8 bits as the name of the encoding implies. ASN.1 PER Unaligned
only encodes runtime information that cannot be inferred from the schema, such as the length of the lists or union
type.

ASN.1 PER Unaligned encodes unbounded data types and bounded data types whose logical upper bound is
greater than 65536 using a technique called fragmentation where the encoding of the value consists of one or more
consecutive fragments each consisting of a length prefix followed by a series of items. The nature of each item
depends on the type being encoded. For example, an item might be a character, a bit, or a logical element of a list.
A value encoded using fragmentation consists of 0 or more fragments of either 16384, 32768, 49152, or 65536 items
followed by a single fragment of 0 to 16383 items where each fragment is as large as possible and no fragment is
larger than the preceding fragment. Refer to Table 6.1 for details on fragment length prefix encoding.

1https://www.itu.int/rec/T-REC-X.680/en
2https://www.itu.int/en/ITU-T/asn1/Pages/Application-fields-of-ASN-1.aspx
3https://www.oss.com/asn1/resources/standards-use-asn1.html
4https://galois.com
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Numbers. ASN.1 PER Unaligned supports integer data types of arbitrary widths. The schema-writer may con-
strain the integer data type with a lower and upper bound:

• If the integer type has no bounds or if the integer type only has an upper bound. ASN.1 PER Unaligned
encodes the value as a Big Endian Two’s Complement [59] signed integer prefixed by its byte-length as a
unsigned 8-bit integer.

• If the integer type has a lower bound but not an upper bound. ASN.1 PER Unaligned substracts the lower
bound from the value and encodes the result as a variable-length Big Endian unsigned integer prefixed by its
byte-length as a unsigned 8-bit integer. For example, the value −18 of an integer type whose lower bound is
−20 is encoded as the unsigned integer 2 = −18− (−20) prefixed with the byte-length definition 0x01.

• If the integer type has both a lower and an upper bound. ASN.1 encodes the difference between the value
and the lower bound using the smallest possible fixed-length Big Endian unsigned integer that can encode the
difference between the upper and the lower bound. For example, an integer type constrained between the values
5 and 6 encodes the values as an unsigned 2-bit integer where 0 corresponds to 5 and 1 corresponds to 6.

In terms of real numbers, ASN.1 PER Unaligned does not support IEEE 764 floating-point numbers [60]. Instead,
ASN.1 PER Unaligned encodes a real numbers as concatenation of its sign, base, scale, exponent, and mantissa where
the real value equals sign × mantissa × 2scale × baseexponent. Refer to Figure 6.2 for details on the encoding.

Figure 6.2: A visual representation of the REAL data type encoding inspired by [45], page 401. ASN.1 PER Unaligned
encodes a real number as an 8-bit unsigned integer representing the byte-length of the real number, the sign (positive
or negative) as 1-bit, the base as 2-bits (binary, octal, or hexadecimal), the scale as 2-bits (0, 1, 2, or 3), the exponent as
a variable-length signed integer prefixed by its byte-length, and the mantissa as a Big Endian variable-length unsigned
integer whose width is bounded by the data type length prefix.

Strings. ASN.1 supports a rich set of string types that are not NUL-delimited. The IA5String represents the full
ASCII [33] range. The VisibleString subtype represents the subset of ASCII [33] that does not include control

Table 6.1: ASN.1 PER Unaligned fragment length prefixes depending on the number of items in the fragment as
determined by the From and To ranges.

From To Fragment prefix

0 127 Length as an 8-bit unsigned integer
128 16383 Length as the 2-bits 10 followed by a Big Endian 14-bit unsigned integer
16384 16384 1100 0001
32768 32768 1100 0010
49152 49152 1100 0011
65536 65536 1100 0100
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characters. The NumericString subtype represents digits and spaces. Finally, the UTF8String represents
Unicode strings that are encoded in UTF-8 [38]. Schema-authors may subtype the supported string types to contrain
the permitted alphabet. In the case of unconstrained string types and constrained string subtypes whose permitted
alphabet contains more than 64 characters, each character is represented by its standard codepoint. Otherwise, ASN.1
PER Unaligned creates an ordered list of permitted characters (its alphabet) and encodes each character as an index
of such list represented using the smallest possible Big Endian unsigned integer that can represent the set of permitted
characters. ASN.1 PER Unaligned encodes strings using fragmentation when using string types in which the byte-
length of the string is not always a multiple of the logical length of the string like UTF8String, when the string
type has no size upper bound, or when the string type has a size upper bound which is greater than 65536. Otherwise,
the string is prefixed with the string logical length as a bounded integer encoded as described in the Numbers section
whose lower and upper bounds correspond to the size bounds of the string type.

Booleans. ASN.1 PER Unaligned encodes booleans as the bit constants 0 (False) and 1 (True).
Enumerations. ASN.1 PER Unaligned represents enumeration constants using the smallest Big Endian unsigned

integer width that can encode the range of values in the enumeration.
Unions. ASN.1 supports a union operator called CHOICE. ASN.1 PER Unaligned prefixes the encoded value with

the index to the choice in the union data type as the smallest-width Big Endian unsigned integer that can represent
the available choices. ASN.1 also supports the concept of an open type. An open type is a container that holds an
arbitrary value of a type known by the serializer and the deserializer applications. An open type is encoded as the
encoding of the arbitrary value using fragmentation. ASN.1 PER Unaligned does not encode the type of the arbitrary
value. Therefore, the byte length information allows a deserializer to skip the field if it does not know how to decode
it.

Lists. ASN.1 PER Unaligned supports an heterogeneous list type called SEQUENCE and an homogeneous list
type called SEQUENCE OF. Both sequence types can be bounded or unbounded. Unbounded sequences are encoded
using fragmentation and empty unbounded sequences are encoded as an empty fragment. Bounded lists are encoded
as the sequence of its elements with no length metadata. If an heterogeneous sequence (SEQUENCE) contains N
optional values, then the sequence is prefixed by a sequence of N bits that determine whether each optional value is
set.

Figure 6.3: ASN.1 schema to serialize the Figure 5.2 input data.

49



University of Oxford Kellogg College

Figure 6.4: Annotated hexadecimal output of serializing the Figure 5.2 input data with ASN.1 PER Unaligned.
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Table 6.2: A high-level summary of the ASN.1 PER Unaligned schema-driven serialization specification.

Website https://www.itu.int/rec/T-REC-X.680/en
Company / Individual International Telecommunication Union
Year 1984
Specification ITU-T X.680-X.693 [123]
License Implementation-dependent
Schema Language ASN.1
Layout Sequential and order-based
Languages C, C++, C#, Java, Ada/Spark, Python, Erlang

Types
Numeric Big Endian Two’s Complement [59] signed integers of user-defined length

Big Endian unsigned integers of user-defined length
Real numbers consisting of up to 255 bytes encoding the base, scale, exponent, and
mantissa
Arbitrary-length ASCII-encoded decimal numbers

String ASCII [33], UTF-8 [38]
Composite Choice, Enum, Set, Sequence
Scalars Boolean, Null
Other Octet string (byte array)

Bit-string (arbitrary-length bit array)
Date, Time, Date-time [80]
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6.2 Use Cases
In Table 6.3, I identify a set of use-cases that binary serialization specifications tend to optimize for and the charac-
teristics that typically enable those use-cases.

Table 6.3: Every serialization specification considered in this study supports a subset of these use-cases. The Enabling
characteristics column describes certain characteristics that tend to result in a serialization specification that is a
good fit for the respective use-case. The last column shows an example of a JSON-compatible binary serialization
specification that has at least one of the respective enabling characteristics. However, the fact that a serialization
specification has certain characteristics does not guarantee that its implementations make use of those characteristics
to enable the respective use-cases, often for reasons other than technical.

Use case Enabling characteristics Example

Space-efficiency The resulting bit-string embeds little metadata ASN.1 PER Un-
aligned [124]

Non-aligned data types
Runtime-efficient de-
serialization

Deserialization without additional memory allocations Cap’n Proto [146]

Table of contents for the bit-string
Aligned data types

Partial reads Field byte-length serialized before content FlatBuffers Binary
Wire Format [143]

Table of contents of the bit-string
Streaming deserial-
ization

Field byte-length serialized before content Smile [121]

Sequential and standalone-encoded fields
Streaming serializa-
tion

No byte-length prefix metadata, mainly for nested structures UBJSON [20]

Content serialized before structure
Positional structural markers instead of length prefixes

In-place updates Field spatial locality BSON [95]
No byte-length field metadata
Positional structural markers instead of length prefixes

Constrained devices Simple specification and binary layout CBOR [17]
Small generated code and/or runtime library

Drop-in JSON
replacement

The resulting bit-string embeds all metadata MessagePack [64]

None of the binary serialization specifications from this study support every use-case listed in Table 6.3 as some
enabling characteristics tend to conflict:

• The Space-efficiency use-case typically involves a schema-driven serialization specification. However, JSON
[21] is a schema-less serialization specification. Therefore, the Drop-in JSON replacement requires a schema-
less serialization specification.

• The Space-efficiency use-case requires bit-strings to be as compact as possible. However, the Runtime-efficient
deserialization use-case may require aligned data types and alignment may involve significant padding. For
example, Cap’n Proto [146] aligns data types to 64-bit words for runtime-performance reasons and supports a
simple compression scheme to mitigate the additional space overhead.

• The Space-efficiency use-case typically requires bit-strings to contain minimal metadata. However, the Partial
reads use-case may require a table of contents for the bit-string, which may result in more encoded metadata.
The extra overhead is amortized when encoding large amounts of data sharing the same structures. The in-
put data JSON document from Figure 5.2 is a small data structure that consists of significant structure and
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relatively little data. In the case of the Cap’n Proto [146] and FlatBuffers [143] schema-driven serialization
specifications, roughly half of the bit-strings produced by serializing the input data consists of pointers and
structural information that represent a table of contents.

• The Streaming serialization use-case may involve serializing the scalar types before the composite types, like
FlexBuffers [144], given that an implementation may not know the size of a composite data type before its
members are encoded. However, this approach tends to conflict with the Streaming deserialization use-case as
an implementation would have to wait until all scalar types are received before starting to understand how they
interconnect.

• The Runtime-efficient deserialization and Partial reads use-cases typically involve a pointer-based table of
contents of the bit-string. As a result, implementing In-place updates is usually not runtime-efficient as some
updates might involve adjusting pointer references in multiple parts of the bit-string as noted by [105] when
using the FlatBuffers [143] serialization specification. For example, adding a new field to a FlexBuffers [144]
map may involve creating a new keys vector, updating the metadata and contents of the vector data section, and
adjusting most of the pointers in the bit-string.

Discussion. I could not identify a fundamental conflict involving the Constrained devices use-case. I believe that
whether a binary serialization specification is a good fit for constrained devices tends to be a consequence of how
it is implemented rather than a property of the serialization specification. For example, the official Protocol Buffers
[67] implementations are typically not suitable for constrained devices as they tend to generate large amounts of code
and incur significant binary size and memory allocation overheads. Kenton Varda, one of Protocol Buffers former
authors, argues that the official Protocol Buffers implementations “were designed for use in Google’s servers, where
binary size is mostly irrelevant, while speed and features (e.g. reflection) are valued” 5. However, nanopb 6 is a
Protocol Buffers implementation targeted at 32-bit micro-controllers and other constrained devices. Refer to [14] for
discussions and examples of nanopb.

6.3 Sequential and Pointer-based Serialization Specifications

Figure 6.5: Visual representations of a sequential bit string (top) and a pointer-based bit string (bottom).

5https://news.ycombinator.com/item?id=25586632
6https://github.com/nanopb/nanopb
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I found that serialization specifications can be classified into categories that are orthogonal to whether a serializa-
tion specification is schema-driven or schema-less: whether the resulting bit-string is sequential or pointer-based as
shown in Figure 6.5.

Sequential. Serialization specifications are sequential if the bit-strings they produce are concatenations of independently-
encoded data types. The majority of the serialization specifications discussed in this study are sequential. As an ex-
ample, Protocol Buffers [67] is a sequential serialization specification as its bit-strings consist of a non-deterministic
concatenation of fields 7 that are standalone with respect to the rest of the message.

Pointer-based. Serialization specifications are pointer-based if the bit-strings they produce are tree structures
where each node is either a scalar type or a composite value consisting of pointers to further nodes. In comparison to
sequential serialization specifications, this layout typically results in larger bit-strings that are complicated to under-
stand. However, pointer-based serialization specifications enable efficient streaming deserialization, efficient random
access reads and no additional memory allocations during deserialization which translates to better deserialization
runtime performance. The pointer-based serialization specifications discussed in this study are Cap’n Proto [146],
FlatBuffers [143], and FlexBuffers [144].

6.4 Reproducing this Study
The hexadecimal bit-strings discussed in this study can be recreated by the reader using the code files hosted on
GitHub 8. This GitHub repository contains a folder called analysis including the input data document from Figure 5.2
and the schema and code files for each binary serialization specification implementation discussed in Table 5.1 and
Table 5.2. The repository includes a Makefile for serializing the input data document with each of the selected
serialization specifications.

7https://developers.google.com/protocol-buffers/docs/encoding#implications
8https://github.com/jviotti/binary-json-survey
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7 | A Benchmark of JSON-compatible Binary Serialization Spec-
ifications

For a complete reference, please refer to the paper A Benchmark of JSON-compatible Binary Serialization Specifica-
tions [150]. In this particular chapter, I focus on one example from each tier of the taxonomy defined in chapter 4
and the conclusions and reproducibility sections of the above paper. Example schema definitions for each presented
benchmark case are shown in Figure 7.1.

7.1 Benchmark Example: Tier 1 TNN

Image Optimizer 1 is an Azure App Services WebJob 2 to compress website images used in the web development
industry. In Figure 7.2, I demonstrate a Tier 1 minified < 100 bytes textual non-redundant nested (Tier 1 TNN
from Table 4.1) JSON document that consists of an Image Optimizer configuration to perform lossy compression on
images inside a particular folder.

The smallest bit-string is produced by ASN.1 PER Unaligned [124] (21 bytes), closely followed by Protocol
Buffers [67] (23 bytes) and Apache Avro [61] (24 bytes). The binary serialization specifications that produced the
smallest bit-strings are schema-driven and sequential [151]. Conversely, the largest bit-string is produced by BSON
[95] (102 bytes), closely followed by FlatBuffers [143] (100 bytes) and Cap’n Proto Binary Encoding [146] (96 bytes).
With the exception of BSON, the binary serialization specifications that produced the largest bit-strings are schema-
driven and pointer-based [151]. In comparison to JSON [46] (82 bytes), binary serialization achieves a 3.9x size
reduction in the best case for this input document. However, 4 out of the 14 JSON-compatible binary serialization
specifications listed in Table 5.5 and Table 5.6 result in bit-strings that are larger than JSON: Cap’n Proto Binary
Encoding [146], FlatBuffers [143], BSON [95] and FlexBuffers [144]. These binary serialization specifications are
either schema-less or schema-driven and pointer-based.

For this Tier 1 TNN document, the best performing schema-driven serialization specification achieves a 2.9x size
reduction compared to the best performing schema-less serialization specification: CBOR [17] and MessagePack
[64] (61 bytes). As shown in Table 7.1, uncompressed schema-driven specifications provide smaller average and
median bit-strings than uncompressed schema-less specifications. However, as highlighted by the range and stan-
dard deviation, uncompressed schema-driven specifications exhibit higher size reduction variability depending on the
expressiveness of the schema language (i.e. how the language constructs allow you to model the data) and the size
optimizations devised by its authors. With the exception of the pointer-based binary serialization specifications Cap’n
Proto Binary Encoding [146] and FlatBuffers [143], the selection of schema-driven serialization specifications listed
in Table 5.5 produce bit-strings that are equal to or smaller than their schema-less counterparts listed in Table 5.6. The
best performing sequential serialization specification achieves a 2x size reduction compared to the best performing
pointer-based serialization specification: Cap’n Proto Packed Encoding [146] (44 bytes).

The compression formats listed in subsection 5.2.6 result in positive gains for the bit-strings produced by Cap’n
Proto Binary Encoding [146] and FlatBuffers [143]. The best performing uncompressed binary serialization specifi-
cation achieves a 4.1x size reduction compared to the best performing compression format for JSON: GZIP [44] (88
bytes).

Table 7.1: A byte-size statistical analysis of the benchmark results shown in Figure 7.2 divided by schema-driven and
schema-less specifications.

Category Schema-driven Schema-less
Average Median Range Std.dev Average Median Range Std.dev

Uncompressed 45.500 28 79 31.048 76.167 72 41 14.916
GZIP (compression level
9)

55.500 48 39 14.629 88.500 86.500 27 10.720

LZ4 (compression level
9)

60 47 61 23.500 93 89 39 14.468

LZMA (compression
level 9)

57.750 52 34 12.387 88.667 87.500 27 10.094

1https://github.com/madskristensen/ImageOptimizerWebJob
2https://docs.microsoft.com/en-us/azure/app-service/webjobs-create
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Figure 7.1: Examples of schema definitions written for 3 different JSON documents using 3 different interface defini-
tion languages: an ASN.1 [123] schema definition for the JSON document presented in section 7.3 (left), an Apache
Avro IDL [61] schema definition for the JSON document presented in section 7.1 (top right) and a Cap’n Proto In-
terface Definition Language (IDL) [146] schema definition for the JSON document presented in section 7.2 (bottom
right).
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Figure 7.2: The benchmark results for the ImageOptimizer Azure Webjob Configuration test case listed in Table 5.3
and Table 5.4.

In Figure 7.3, we observe the medians for uncompressed schema-driven binary serialization specifications to be
smaller in comparison to uncompressed schema-less binary serialization specifications. The range between the upper
and lower whiskers and the inter-quartile range of uncompressed schema-less binary serialization specifications is
smaller than the range between the upper and lower whiskers and the inter-quartile range of uncompressed schema-
driven binary serialization specifications.

In terms of compression, LZ4 results in the lower median for schema-driven binary serialization specifications
while GZIP results in the lower median for schema-less binary serialization specifications. However, compression is
not space-efficient in terms of the median for both schema-driven and schema-less binary serialization specifications.
While compression does not contribute to space-efficiency, it reduces the range between the upper and lower whiskers

Table 7.2: The benchmark raw data results and schemas for the plot in Figure 7.2.

Serialization Format Schema Uncompressed GZIP LZ4 LZMA

ASN.1 (PER Unaligned) schema.asn 21 41 40 45
Apache Avro (unframed) schema.json 24 44 43 47
Microsoft Bond (Compact Binary v1) schema.bond 30 50 49 54
Cap’n Proto (Binary Encoding) schema.capnp 96 76 97 72
Cap’n Proto (Packed Encoding) schema.capnp 44 64 63 68
FlatBuffers schema.fbs 100 80 101 79
Protocol Buffers (Binary Wire Format) schema.proto 23 43 42 47
Apache Thrift (Compact Protocol) schema.thrift 26 46 45 50
JSON - 82 88 96 90
BSON - 102 103 117 100
CBOR - 61 76 78 76
FlexBuffers - 89 102 107 103
MessagePack - 61 77 78 78
Smile - 70 86 88 88
UBJSON - 74 87 90 87
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Figure 7.3: Box plot of the statistical results in Table 7.1.

and inter-quartile range for both schema-driven and schema-less binary serialization specifications. In particular,
the compression format with the smaller range between the upper and lower whiskers for schema-driven binary
serialization specifications is LZMA, the compression formats with the smaller inter-quartile range for schema-driven
binary serialization specifications are GZIP and LZMA, the compression format with the smaller range between the
upper and lower whiskers for schema-less binary serialization specifications is GZIP, and the compression format
with the smaller inter-quartile range for schema-less binary serialization specifications is LZMA.

Overall, I conclude that uncompressed schema-driven binary serialization specifications are space-efficient in
comparison to uncompressed schema-less binary serialization specifications and that compression does not contribute
to space-efficiency in comparison to both uncompressed schema-driven and schema-less binary serialization specifi-
cations.

7.2 Benchmark Example: Tier 2 NRN
GeoJSON [27] is a standard to encode geospatial information using JSON. GeoJSON is used in industries that have
geographical and geospatial use cases such as engineering, logistics and telecommunications. In Figure 7.4, I demon-
strate a Tier 2 minified ≥ 100 < 1000 bytes numeric redundant nested (Tier 2 NRN from Table 4.1) JSON
document that defines an example polygon using the GeoJSON format.

In this exceptional case, the smallest bit-strings for this input document are produced by the schema-less sequential
specifications MessagePack [64] (162 bytes) and CBOR [17] (172 bytes), followed by the schema-driven sequential
specification ASN.1 PER Unaligned [124] (205 bytes). In comparison to other input documents, this input document
defines poly-dimensional JSON [46] arrays, which the schema-driven binary serialization specifications from the
selection do not encode in a space-efficient manner. Similarly to other cases, the largest bit-string is produced by
FlatBuffers [143] (680 bytes), followed by BSON [95] (456 bytes) and Cap’n Proto Binary Encoding [146] (448
bytes). With the exception of BSON, the binary serialization specifications that produced the largest bit-strings are
pointer-based [151]. In comparison to JSON [46] (190 bytes), binary serialization only achieves a 1.1x size reduction
in the best case for this input document. With the exception of the schema-less sequential MessagePack [64] and
CBOR [17] binary serialization specifications, all the other JSON-compatible binary serialization specifications listed
in Table 5.5 and Table 5.6 result in bit-strings that are larger than JSON.

For this Tier 2 NRN document, the smaller bit-string is produced by a schema-less specification. However, the
best performing schema-less serialization specification only achieves a 1.2x size reduction compared to the best per-
forming schema-driven serialization specification: ASN.1 PER Unaligned [124] (205 bytes). As shown in Table 7.3,
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Figure 7.4: The benchmark results for the GeoJSON Example Document test case listed in Table 5.3 and Table 5.4.

uncompressed schema-less specifications provide smaller average and median bit-strings than uncompressed schema-
driven specifications. Additionally, as highlighted by the range and standard deviation, uncompressed schema-driven
specifications exhibit higher size reduction variability depending on the expressiveness of the schema language (i.e.
how the language constructs allow you to model the data) and the size optimizations devised by its authors. The
schema-less and sequential specifications CBOR [17] and MessagePack [64] produce bit-strings that are smaller to
all their schema-driven counterparts listed in Table 5.5. The best performing sequential serialization specification
only achieves a 1.4x size reduction compared to the best performing pointer-based serialization specification: Cap’n
Proto Packed Encoding [146] (228 bytes).

The compression formats listed in subsection 5.2.6 result in positive gains for all bit-strings. The best performing
compression format for JSON, LZMA (116 bytes), achieve a 1.3x size reduction compared to the best performing
uncompressed binary serialization specification.

Table 7.3: A byte-size statistical analysis of the benchmark results shown in Figure 7.4 divided by schema-driven and
schema-less specifications.

Category Schema-driven Schema-less
Average Median Range Std.dev Average Median Range Std.dev

Uncompressed 343 290.500 475 144.554 255.833 218 294 101.480
GZIP (compression level
9)

131.750 115.500 120 36.779 139 128.500 76 28.384

LZ4 (compression level
9)

167.500 144 161 50.806 169.167 155.500 102 36.269

LZMA (compression
level 9)

122 106.500 103 31.064 132.667 124 58 23.809

In Figure 7.5, contrary to other cases, we observe the medians for uncompressed schema-less binary serializa-
tion specifications to be smaller in comparison to uncompressed schema-driven binary serialization specifications.
The range between the upper and lower whiskers of uncompressed schema-less binary serialization specifications is
smaller than the range between the upper and lower whiskers of uncompressed schema-driven binary serialization
specifications. However, the inter-quartile range of uncompressed schema-less binary serialization specifications is
larger than the inter-quartile range of uncompressed schema-driven binary serialization specifications. Additionally,
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Figure 7.5: Box plot of the statistical results in Table 7.3.

their respective quartiles overlap.
In terms of compression, LZMA results in the lower median for both schema-driven and schema-less binary seri-

alization specifications. Additionally, GZIP, LZ4 and LZMA are space-efficient in terms of the median in comparison
to both uncompressed schema-driven and schema-less binary serialization specifications. However, the use of GZIP,
LZ4 and LZMA for schema-driven binary serialization specifications exhibits upper outliers. Nevertheless, compres-
sion reduces the range between the upper and lower whiskers and inter-quartile range for both schema-driven and
schema-less binary serialization specifications. In particular, the compression formats with the smaller range between
the upper and lower whiskers and the smaller inter-quartile range for schema-driven binary serialization specifica-
tions are GZIP and LZMA, the compression format with the smaller range between the upper and lower whiskers for
schema-less binary serialization specifications is LZMA, and the compression formats with the smaller inter-quartile

Table 7.4: The benchmark raw data results and schemas for the plot in Figure 7.4.

Serialization Format Schema Uncompressed GZIP LZ4 LZMA

ASN.1 (PER Unaligned) schema.asn 205 105 136 103
Apache Avro (unframed) schema.json 283 100 130 92
Microsoft Bond (Compact Binary v1) schema.bond 298 116 143 106
Cap’n Proto (Binary Encoding) schema.capnp 448 146 197 132
Cap’n Proto (Packed Encoding) schema.capnp 228 142 162 137
FlatBuffers schema.fbs 680 220 291 195
Protocol Buffers (Binary Wire Format) schema.proto 325 115 145 107
Apache Thrift (Compact Protocol) schema.thrift 277 110 136 104
JSON - 190 121 146 116
BSON - 456 187 234 167
CBOR - 172 112 138 109
FlexBuffers - 309 167 200 163
MessagePack - 162 111 132 109
Smile - 228 131 158 128
UBJSON - 208 126 153 120
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range for schema-less binary serialization specifications are GZIP and LZMA.
Overall, I conclude that uncompressed schema-less binary serialization specifications are space-efficient in com-

parison to uncompressed schema-driven binary serialization specifications and that all the considered compression
formats are space-efficient in comparison to uncompressed schema-driven and schema-less binary serialization spec-
ifications.

7.3 Benchmark Example: Tier 3 BRF

Nightwatch.js 3 is an open-source browser automation solution used in the software testing industry. In Figure 7.6, I
demonstrate a Tier 3 minified ≥ 1000 bytes boolean redundant flat (Tier 3 BRF from Table 4.1) JSON document
that consists of a Nightwatch.js configuration file that defines a set of general-purpose WebDriver [130] and Selenium
4 options.

Figure 7.6: The benchmark results for the Nightwatch.js Test Framework Configuration test case listed in Table 5.3
and Table 5.4.

The smallest bit-string is produced by ASN.1 PER Unaligned [124] (89 bytes), followed by Apache Avro [61]
(92 bytes) and Protocol Buffers [67] (109 bytes). The binary serialization specifications that produced the smallest
bit-strings are schema-driven and sequential [151]. Conversely, the largest bit-string is produced by FlexBuffers
[144] (1389 bytes), followed by BSON [95] (1327 bytes) and UBJSON [20] (1268 bytes). The binary serialization
specifications that produced the largest bit-strings are schema-less and with the exception of FlexBuffers, they are also
sequential [151]. In comparison to JSON [46] (1507 bytes), binary serialization achieves a 16.9x size reduction in the
best case for this input document. Similar large size reductions are observed in JSON documents whose content is
dominated by boolean and numeric values. None of the 14 JSON-compatible binary serialization specifications listed
in Table 5.5 and Table 5.6 result in bit-strings that are larger than JSON.

For this Tier 3 BRF document, the best performing schema-driven serialization specification achieves a 12.2x
size reduction compared to the best performing schema-less serialization specification: Smile [121] (1090 bytes).
As shown in Table 7.5, uncompressed schema-driven specifications provide smaller average and median bit-strings
than uncompressed schema-less specifications. However, as highlighted by the range and standard deviation, un-
compressed schema-driven specifications exhibit higher size reduction variability depending on the expressiveness
of the schema language (i.e. how the language constructs allow you to model the data) and the size optimizations

3https://nightwatchjs.org
4https://www.selenium.dev
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devised by its authors. The entire selection of schema-driven serialization specifications listed in Table 5.5 produce
bit-strings that are equal to or smaller than their schema-less counterparts listed in Table 5.6. The best performing se-
quential serialization specification only achieves a 1.6x size reduction compared to the best performing pointer-based
serialization specification: Cap’n Proto Packed Encoding [146] (149 bytes).

The compression formats listed in subsection 5.2.6 result in positive gains for all bit-strings except the ones
produced by ASN.1 PER Unaligned [124], Apache Avro [61], Microsoft Bond [96], Protocol Buffers [67] and Apache
Thrift [129]. The best performing uncompressed binary serialization specification achieves a 7.2x size reduction
compared to the best performing compression format for JSON: GZIP [44] (649 bytes).

Table 7.5: A byte-size statistical analysis of the benchmark results shown in Figure 7.6 divided by schema-driven and
schema-less specifications.

Category Schema-driven Schema-less
Average Median Range Std.dev Average Median Range Std.dev

Uncompressed 195.250 141.500 375 122.472 1237 1222 299 101.423
GZIP (compression level
9)

165.750 145 198 63.192 703.333 676.500 229 75.832

LZ4 (compression level
9)

186.625 155 282 87.853 940.167 909.500 268 93.060

LZMA (compression
level 9)

159.250 146.500 150 49.487 720.500 697.500 206 69.663

Table 7.6: The benchmark raw data results and schemas for the plot in Figure 7.6.

Serialization Format Schema Uncompressed GZIP LZ4 LZMA

ASN.1 (PER Unaligned) schema.asn 89 105 108 108
Apache Avro (unframed) schema.json 92 104 111 107
Microsoft Bond (Compact Binary v1) schema.bond 221 226 237 219
Cap’n Proto (Binary Encoding) schema.capnp 304 170 209 158
Cap’n Proto (Packed Encoding) schema.capnp 149 148 157 151
FlatBuffers schema.fbs 464 302 390 257
Protocol Buffers (Binary Wire Format) schema.proto 109 129 128 132
Apache Thrift (Compact Protocol) schema.thrift 134 142 153 142
JSON - 1507 649 926 682
BSON - 1327 666 933 694
CBOR - 1176 640 874 667
FlexBuffers - 1389 869 1140 873
MessagePack - 1172 670 872 678
Smile - 1090 683 886 701
UBJSON - 1268 692 936 710

In Figure 7.7, we observe the medians for uncompressed schema-driven binary serialization specifications to
be smaller in comparison to uncompressed schema-less binary serialization specifications. The range between the
upper and lower whiskers of uncompressed schema-driven binary serialization specifications is smaller than the range
between the upper and lower whiskers of uncompressed schema-less binary serialization specifications. However, the
inter-quartile range of both both uncompressed schema-driven and schema-less binary serialization specifications is
similar.

In terms of compression, GZIP and LZMA result in the lower medians for schema-driven binary serialization
specifications while GZIP results in the lower median for schema-less binary serialization specifications. Compres-
sion is not space-efficient in terms of the median in comparison to uncompressed schema-driven binary serialization
specifications. However, GZIP, LZ4 and LZMA are space-efficient in terms of the median in comparison to un-
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Figure 7.7: Box plot of the statistical results in Table 7.5.

compressed schema-less binary serialization specifications. Additionally, the use of GZIP, LZ4 and LZMA for both
schema-driven binary serialization specifications and schema-less binary serialization specifications exhibits upper
outliers. Nevertheless, compression reduces the range between the upper and lower whiskers and inter-quartile range
for both schema-driven and schema-less binary serialization specifications. In particular, the compression format
with the smaller inter-quartile range for schema-driven binary serialization specifications is LZMA, the compression
format with the smaller range between the upper and lower whiskers for schema-less binary serialization specifica-
tions is LZMA, and the compression format with the smaller inter-quartile range for schema-less binary serialization
specifications is GZIP.

Overall, I conclude that uncompressed schema-driven binary serialization specifications are space-efficient in
comparison to uncompressed schema-less binary serialization specifications. Compression does not contribute to
space-efficiency in comparison to schema-driven binary serialization specifications but all the considered compression
formats are space-efficient in comparison to schema-less binary serialization specifications.

7.4 Conclusions

7.4.1 Q1: How do JSON-compatible schema-less binary serialization specifications com-
pare to JSON in terms of space-efficiency?

Table 7.7 demonstrates that the median size reduction of the selection of schema-less binary serialization specifica-
tions listed in Table 5.6 is 9.1% and the average size reductions of the selection of schema-less binary serialization
specifications listed in Table 5.6 is 8.2% for the selection of input data set described in Table 5.3 and Table 5.4.
In comparison to JSON [46], FlexBuffers [144] and BSON [95] often result in larger bit-strings. In comparison to
JSON, both CBOR [17] and MessagePack [64] are strictly superior in terms of space-efficiency. In both cases, the
median and average size reductions ranged between 22.4% and 22.8% for the selection of input data. Compared to
the other schema-less binary serialization specifications, MessagePack [64] tends to provide the best size reductions
in the Tier 1 Minified < 100 bytes and Tier 2 Minified ≥ 100 < 1000 bytes categories while Smile [121] tends to
provide the best size reductions for Tier 3 Minified ≥ 1000 bytes JSON documents. As a notable positive exception
shown in Figure 7.8, FlexBuffers [144] outperforms the rest of the schema-less binary serialization specifications in
two cases: the Tier 2 Minified ≥ 100 < 1000 bytes, textual, redundant, and flat (Tier 2 TRF) JSON document (C)
and the Tier 3 Minified ≥ 1000 bytes, textual, redundant, and flat (Tier 3 TRF) JSON document given its automatic
string deduplication features [151]. Figure 7.8 shows that CBOR [17] and MessagePack [64] tend to outperform the
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other schema-less binary serialization specifications in terms of space-efficiency while producing stable results with
no noticeable outliers. In comparison, BSON [95] (A and B) and FlexBuffers [144] (C and D) produce noticeable
outliers at both sides of the spectrum while remaining less space-efficient than the rest of the schema-less binary
serialization specifications in most cases. Like BSON [95] (B), Smile [121] produces a negative outlier (E) for the
Tier 2 NRN case.

Summary. There exists schema-less binary serialization specifications that are space-efficient in comparison to
JSON [46]. Based on my findings, I conclude that using MessagePack [64] on Tier 1 Minified < 100 bytes and Tier 2
Minified ≥ 100 < 1000 bytes JSON documents, Smile [121] on Tier 3 Minified ≥ 1000 bytes JSON documents, and
FlexBuffers [144] on JSON documents with high-redundancy of textual values increases space-efficiency.

Table 7.7: A summary of the size reduction results in comparison to JSON [46] of the selection of schema-less binary
serialization specifications listed in Table 5.6 against the input data listed in Table 5.3 and Table 5.4. See Figure 7.8
for a visual representation of this data.

Serialization Specification Size Reductions in Comparison To JSON Negative CasesMaximum Minimum Range Median Average

BSON 34.1% -140.0% 174.1 -7.7% -16.8% 21 / 27 (77.7%)
CBOR 43.2% 6.8% 36.3 22.5% 22.4% 0 / 27 (0%)
FlexBuffers 66.1% -65.3% 131.4 -4.1% -4.9% 16 / 27 (59.2%)
MessagePack 43.2% 6.8% 36.3 22.7% 22.8% 0 / 27 (0%)
Smile 31.8% -20.0% 51.8 14.2% 15.5% 2 / 27 (7.4%)
UBJSON 34.1% -9.5% 43.6 7.1% 9.9% 1 / 27 (3.7%)
Averages 42.1% -36.8% 78.9 9.1% 8.2% 24.6%

Figure 7.8: A box plot that demonstrates the size reduction (in percentages) of the selection of schema-less binary
serialization specifications listed in Table 5.6 in comparison to uncompressed JSON [46] given the input data listed
in Table 5.3 and Table 5.4.
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7.4.2 Q2: How do JSON-compatible schema-driven binary serialization specifications com-
pare to JSON and JSON-compatible schema-less binary serialization specifications in
terms of space-efficiency?

As illustrated in Table 7.8, the median size reduction of the selection of schema-driven binary serialization specifi-
cations listed in Table 5.5 is more than five times higher that the schema-less binary serialization specification size
reductions listed in Table 7.7 and the average size reduction of the selection of schema-driven binary serialization
specifications listed in Table 5.5 is more than five times higher that the schema-less binary serialization specification
size reductions listed in Table 7.7 for the given input data described in Table 5.3 and Table 5.4. FlatBuffers [143]
and Cap’n Proto [146] (unpacked) tend to be less space-efficient than the selection of schema-less binary serialization
specifications and are surpassed by the rest of the schema-driven binary serialization specifications listed in Table 5.5
for most cases. On the other side, ASN.1 PER Unaligned [124] and Apache Avro (unframed) [61] are the most
space-efficient schema-driven binary serialization specifications in 23 out of the 27 cases listed in Table 5.3. Most
of the schema-driven binary serialization specifications I considered are strictly superior to JSON [46] and to the
schema-less binary serialization specifications listed in Table 5.6 in terms of message size with a common exception:
ASN.1 PER Unaligned [124], Apache Avro (unframed) [61], Microsoft Bond (Compact Binary v1) [96], Protocol
Buffers [67], Apache Thrift (Compact Protocol) [129], and Cap’n Proto [146] (packed) perform less space-efficiently
than JSON [46] and the schema-less binay serialization specifications listed in Table 5.6 in the Tier 2 Minified ≥
100 < 1000 bytes, numeric, redundant, and nested (Tier 2 NRN) GeoJSON [27] document. With the exception of
ASN.1 PER Unaligned [124] and Cap’n Proto Packed Encoding [146], the selection of schema-driven binary serial-
ization specifications result in negative outliers for the Tier 2 NRN case as shown in Figure 7.9 (A, B, C, D, E and
F). Compared to the other JSON documents from the input data set, this JSON document consists of highly nested
arrays and almost no object keys. Leaving that exception aside, I found that in general, the schema-driven binary se-
rialization specifications listed Table 5.5 provide the highest space-efficiency improvements in comparison to JSON
[46] on boolean documents and tend to provide the least space-efficient improvements on textual JSON documents.
Figure 7.9 shows that schema-driven binary serialization specifications, in particular ASN.1 PER Unaligned [124],
Apache Avro [61], Protocol Buffers [67] and Apache Thrift [129], result in high size reductions in comparison to
JSON. However, every considered schema-driven binary serialization specification results in at least one negative
space-efficiency exception.

Summary. The schema-driven binary serialization specifications listed in Table 5.5 tend to be more space-efficient
than the schema-less binary serialization specifications listed in Table 5.6 and JSON [46] in most cases. Based on
my findings, I conclude that ASN.1 PER Unaligned [124] and Apache Avro (unpacked) [61] are space-efficient in
comparison to schema-less binary serialization specifications in almost all cases as they provide over 70% median
size reductions and over 65% average size reductions in comparison to JSON [46].

Table 7.8: A summary of the size reduction results in comparison to JSON [46] of the selection of schema-driven
binary serialization specifications listed in Table 5.5 against the input data listed in Table 5.3 and Table 5.4. See
Figure 7.9 for a visual representation of this data.

Serialization Specification Size Reductions in Comparison To JSON Negative CasesMaximum Minimum Range Median Average

ASN.1 (PER Unaligned) 98.5% -7.9% 106.4 71.4% 65.7% 1 / 27 (3.7%)
Apache Avro (unframed) 100% -48.9% 148.9 73.5% 65.7% 1 / 27 (3.7%)
Microsoft Bond (Compact Binary
v1)

88% -56.8% 144.8 63.4% 54% 1 / 27 (3.7%)

Cap’n Proto 81.1% -179.1% 260.1 1.9% -2.9% 12 / 27 (44.4%)
Cap’n Proto (packed) 90.1% -20% 110.1 55.2% 49.6% 1 / 27 (3.7%)
FlatBuffers 72% -257.9% 329.8 0.7% -6.1% 13 / 27 (48.1%)
Protocol Buffers 100% -71.1% 171.1 70.6% 59.3% 1 / 27 (3.7%)
Apache Thrift (Compact Proto-
col)

97.7% -45.8% 143.5 67.6% 58.1% 1 / 27 (3.7%)

Averages 90.9% -85.9% 176.9 50.6% 42.9% 14.3%

65



University of Oxford Kellogg College

Figure 7.9: A box plot that demonstrates the size reduction (in percentages) of the selection of schema-driven binary
serialization specifications listed in Table 5.5 in comparison to uncompressed JSON [46] given the input data listed
in Table 5.3 and Table 5.4.

7.4.3 Q3: How do JSON-compatible sequential binary serialization specifications com-
pare to JSON-compatible pointer-based binary serialization specifications in terms
of space-efficiency?

Figure 7.10: The binary serialization specifications that resulted in the highest size reductions for each JSON [46]
document for the input data listed in Table 5.3 and Table 5.4, broken down by type. Schema-driven sequential binary
serialization specifications, in particular ASN.1 PER Unaligned [124] and Apache Avro [61], resulted in the highest
size reductions in most cases.

In terms of the schema-less binary serialization specifications listed in Table 5.6, Table 7.7 illustrates that in
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comparison to JSON [46], FlexBuffers [144] results in negative median and average size reductions, a characteristic
only otherwise applicable to BSON [95]. Leaving BSON aside, FlexBuffers only results in more space-efficient
messages than a strict subset of the sequential schema-less binary serialization specifications in three cases: Tier 1
TRN, Tier 2 TRN and Tier 3 TRN. Furthemore, FlexBuffers [144] is comparatively more space-efficient that all the
other schema-less binary serialization specifications listed in Table 5.6 for the Tier 2 TRF JSON document and the
Tier 3 TRF JSON document. However, as explained in subsection 7.4.1, this is due to FlexBuffers automatic string
deduplication feature, which is orthogonal to whether a binary serialization specification is sequential or pointer-
based.

I refer to the schema-driven binary serialization specifications listed in Table 5.5. Table 7.8 illustrates that the
selection of sequential schema-driven binary serialization specifications are strictly superior to FlatBuffers [143] in
terms of space reductions. Similarly, Cap’n Proto [146] (unpacked) provides a more space-efficient bit-string than
a single sequential schema-driven binary serialization specification, Microsoft Bond [96] (Compact Binary v1), in a
single case: Tier 2 BRF. However, Cap’n Proto [146] (packed) results in more space-efficient messages than a strict
subset of the sequential schema-driven binary serialization specifications in six cases: Tier 1 NNF, Tier 1 BRF, Tier 2
NRN, Tier 2 BRF, Tier 3 NRF and Tier 3 BRF; but never surpasses the entire set of sequential schema-driven binary
serialization specifications for any JSON document from the input data set listed in Table 5.3 and Table 5.4.

Summary. Based on my findings, sequential binary serialization specifications are typically more space-efficient
than pointer-based binary serialization specifications, independent of whether they are schema-less or schema-driven.

7.4.4 Q4: How does compressed JSON compares to uncompressed and compressed JSON-
compatible binary serialization specifications?

7.4.4.1 Data Compression

I found that data compression tends to yield negative results on Tier 1 Minified < 100 bytes JSON documents. As an
extreme, LZMA resulted in a negative 171.4% size reduction for the Tier 1 NNF JSON document. The entire selection
of data compression formats produced negative results for all the Tier 1 Minified < 100 bytes JSON documents I
considered except for the Tier 1 BRN JSON document, for which LZ4 produced a negative result but GZIP [44] and
LZMA resulted in a 8.2% and 6.1% reduction, respectively, and the Tier 1 TRN JSON document, for which all data
compression formats produced positive results ranging from 10.4% in the case of LZ4 to 16.7% in the case of GZIP
[44]. Leaving Tier 1 Minified < 100 bytes JSON documents aside, all the data compression formats I selected offered
better average and median compression ratios on textual JSON documents as seen in Table 7.9. Out of the selection
of data compression formats, GZIP [44] performed better in terms of the average and median size reduction in all Tier
2 Minified ≥ 100 < 1000 bytes and Tier 3 Minified ≥ 1000 bytes categories.

Table 7.9: The average and median size reduction of using the selection of data compression formats on the Tier 2
Minified ≥ 100 < 1000 bytes and Tier 3 Minified ≥ 1000 bytes input JSON documents. GZIP [44] resulted in higher
compression ratios for all categories.

Compression Format Numeric Textual Boolean
Average Median Average Median Average Median

GZIP (compression level 9) 39% 33.3% 54% 49.2% 28% 26.8%
LZ4 (compression level 9) 21% 19.5% 40% 32.7% 20% 8.7%
LZMA (compression level 9) 38% 32.8% 52% 48% 25% 21.3%

7.4.4.2 Schema-less Binary Serialization Specifications

Table 7.10 summarizes the size reductions provided by schema-less binary serialization specifications in comparison
to compresed JSON [46]. Leaving BSON [95] and FlexBuffers [144] aside, schema-less binary serialization speci-
fications typically provide space-efficient results in Tier 1 Minified < 100 bytes JSON documents, as these usually
resulted in negative compression ratios. However, compressed JSON provides space-efficient results in 15 out of
the 27 listed in Figure 5.3. In comparison to compressed JSON, no schema-less binary serialization provides both a
positive median and average size reduction. As shown in Figure 7.11, the selection of schema-less binary serialization
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specifications listed in Table 5.6, with the exception of FlexBuffers [144], result in negative outliers for the Tier 2
TRF case (A, B, C, D, E).

As summarized in Table 7.11, compressing the bit-strings produced by schema-less binary serialization specifica-
tions results in 22 out 90 instances that are space-efficient in comparison to compressed JSON on Tier 2 Minified ≥
100 < 1000 bytes and Tier 3 Minified ≥ 1000 bytes JSON documents but reduces the advantages that uncompressed
schema-less binary serialization specifications have over compressed JSON on Tier 1 Minified < 100 bytes JSON
documents. In comparison to compressed JSON, compressed CBOR [17] is strictly equal or superior than the rest
of the compressed schema-less binary serialization specifications in all but a single case: Tier 1 NRN, providing the
highest median (8.8%) and highest average (8.1%) size reductions. As a notable outlier shown in Figure 7.12, best-
case compressed BSON [95] results in a negative size reduction of 44% in comparison to compressed JSON [46] for
the Tier 2 NRN case.

Table 7.10: A summary of the size reduction results in comparison to the best case scenarios of compressed JSON [46]
given the compression formats listed in Table 5.8 of the selection of schema-less binary serialization specifications
listed in Table 5.6 against the input data listed in Table 5.3 and Table 5.4. See Figure 7.11 for a visual representation
of this data.

Serialization Specification Size Reductions in Comparison To Compressed JSON Negative CasesMaximum Minimum Range Median Average

BSON 50.0% -353.9% 403.9 -40.8% -76.9% 22 / 27 (81.4%)
CBOR 69.7% -307.1% 376.8 7.5% -26.8% 13 / 27 (48.1%)
FlexBuffers 45.5% -193.5% 238.9 -48.1% -50.8% 20 / 27 (74%)
MessagePack 69.7% -307.1% 376.8 7.5% -26.2% 13 / 27 (48.1%)
Smile 54.5% -292.2% 346.8 -5% -31.7% 14 / 27 (51.8%)
UBJSON 60.6% -327.3% 387.9 -16.3% -43.6% 15 / 27 (55.5%)
Averages 58.3% -296.9% 355.2 -15.9% -42.7% 59.8%

Table 7.11: A summary of the size reduction results of the best case scenarios of compressed schema-less binary
serialization specifications listed in Table 5.6 in comparison to the best case scenarios of compressed JSON [46] given
the compression formats listed in Table 5.8 and the the input data listed in Table 5.3 and Table 5.4. See Figure 7.12
for a visual representation of this data.

Serialization Specification Size Reductions in Comparison To Compressed JSON Negative CasesMaximum Minimum Range Median Average

Compressed BSON 8% -44% 52 -10.1% -11% 23 / 27 (85.1%)
Compressed CBOR 24.5% -8.7% 33.3 8.8% 8.1% 4 / 27 (14.8%)
Compressed FlexBuffers 0% -58.9% 58.9 -24.4% -23.8% 27 / 27 (100%)
Compressed MessagePack 24.5% -13.7% 38.2 7.5% 5.9% 10 / 27 (37%)
Compressed Smile 13.9% -18.4% 32.2 -1.6% -1.6% 14 / 27 (51.8%)
Compressed UBJSON 13.6% -16.5% 30.1 -0.7% -1.9% 15 / 27 (55.5%)
Averages 14.1% -26.7% 40.8 -3.4% -4.1% 57.3%
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Figure 7.11: A box plot that demonstrates the size reduction (in percentages) of the selection of schema-less bi-
nary serialization specifications listed in Table 5.6 in comparison to the best-case compressed JSON [46] given the
compression formats listed in Table 5.8 and the input data listed in Table 5.3 and Table 5.4.

Figure 7.12: A box plot that demonstrates the size reduction (in percentages) of the selection of schema-less binary
serialization specifications listed in Table 5.6 in their best-case compressed forms given the compression formats
listed in Table 5.8 in comparison to the best-case compressed JSON [46] given the compression formats listed in
Table 5.8 and the input data listed in Table 5.3 and Table 5.4.
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7.4.4.3 Schema-driven Binary Serialization Specifications

As shown in Table 7.12, schema-driven binary serialization specifications provide positive median and average size
reductions in comparison to compressed JSON [46]. However, schema-driven binary serialization specifications tend
to produce negative results in comparison to compressed JSON mostly on Tier 2 Minified≥ 100 < 1000 bytes textual
(22 out of 32 cases) and Tier 3 Minified ≥ 1000 bytes textual (25 out of 32) JSON documents. Even when taking
compression into account, both ASN.1 PER Unaligned [124] and Apache Avro (unpacked) [61] continue to provide
over 70% median size reductions and almost 40% average size reductions. As shown in Figure 7.13, the entire
selection of schema-driven binary serialization specifications listed in Table 5.5 results in negative outliers for the
Tier 2 TRF case (A, B, C, D, E, G and H) and the Tier 2 NRN case (F).

Compressing the bit-strings produced by schema-driven binary serialization specifications shows that compressed
sequential schema-driven binary serialization specifications are strictly superior than compressed JSON [46] as shown
in Table 7.13. On the higher end, both ASN.1 PER Unaligned [124] and Apache Avro [61] provide median and
average size reductions of over 50% in comparison to compressed JSON, with a minimum size reduction of over
11% in the Tier 2 NRN case for which all the schema-driven binary serialization specifications previously resulted in
negative size reductions in comparison to uncompressed JSON. As a notable exception shown in Figure 7.14, best-
case compressed FlatBuffers [143] results in a negative size reduction of 68.1% (A) in comparison to compressed
JSON [46] for the Tier 2 NRN case.

Table 7.12: A summary of the size reduction results in comparison to the best case scenarios of compressed JSON [46]
given the compression formats listed in Table 5.8 of the selection of schema-diven binary serialization specifications
listed in Table 5.5 against the input data listed in Table 5.3 and Table 5.4. See Figure 7.13 for a visual representation
of this data.

Serialization Specification Size Reductions in Comparison To Compressed JSON Negative CasesMaximum Minimum Range Median Average

ASN.1 (PER Unaligned) 98.5% -222.7% 321.3 75.5% 39% 6 / 27 (22.2%)
Apache Avro (unframed) 100% -227.3% 327.3 72.7% 39.4% 5 / 27 (18.5%)
Microsoft Bond (Compact Binary
v1)

93.2% -239% 332.1 60.2% 23.4% 6 / 27 (22.2%)

Cap’n Proto 70.1% -315.6% 385.7 -9.1% -45.7% 15 / 27 (55.5%)
Cap’n Proto (packed) 86.4% -267.5% 353.9 50% 17% 8 / 27 (29.6%)
FlatBuffers 54.5% -486.2% 540.8 -23.4% -55.4% 17 / 27 (62.9%)
Protocol Buffers 100% -238.3% 338.3 67% 28.4% 6 / 27 (22.2%)
Apache Thrift (Compact Proto-
col)

98% -238.3% 336.3 69.3% 29% 6 / 27 (22.2%)

Averages 87.6% -279.4% 367 45.3% 9.4% 31.9%

Summary. In comparison to compressed JSON, both compressed and uncompressed schema-less binary seri-
alization specifications result in negative median and average size reductions. However, both compressed and un-
compressed schema-driven binary serialization specifications result in positive median and average reduction. Fur-
thermore, compressed sequential schema-driven binary serialization specifications are strictly superior to compressed
JSON in all the cases from the input data.
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Figure 7.13: A box plot that demonstrates the size reduction (in percentages) of the selection of schema-driven
binary serialization specifications listed in Table 5.5 in comparison to the best-case compressed JSON [46] given the
compression formats listed in Table 5.8 and the input data listed in Table 5.3 and Table 5.4.

Table 7.13: A summary of the size reduction results of the best case scenarios of compressed schema-driven binary
serialization specifications listed in Table 5.5 in comparison to the best case scenarios of compressed JSON [46] given
the compression formats listed in Table 5.8 and the the input data listed in Table 5.3 and Table 5.4. See Figure 7.14
for a visual representation of this data.

Serialization Specification Size Reductions in Comparison To Compressed JSON Negative CasesMaximum Minimum Range Median Average

Compressed ASN.1 (PER Un-
aligned)

83.8% 11.2% 72.6 54.5% 51.2% 0 / 27 (0%)

Compressed Apache Avro (un-
framed)

84% 16.7% 67.3 52.2% 52.3% 0 / 27 (0%)

Compressed Microsoft Bond
(Compact Binary v1)

66.3% 8.6% 57.6 42% 40.3% 0 / 27 (0%)

Compressed Cap’n Proto 75.7% -13.8% 89.4 22.1% 28% 3 / 27 (11.1%)
Compressed Cap’n Proto
(packed)

77.2% -18.1% 95.3 30.2% 32.7% 3 / 27 (11.1%)

Compressed FlatBuffers 60.4% -68.1% 128.5 10.2% 12.1% 9 / 27 (33.3%)
Compressed Protocol Buffers 80.3% 7.8% 72.5 46.4% 44.6% 0 / 27 (0%)
Compressed Apache Thrift
(Compact Protocol)

78.1% 10.3% 67.8 48.9% 46.2% 0 / 27 (0%)

Averages 75.7% -5.7% 81.4 38.3% 38.4% 6.9%
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Figure 7.14: A box plot that demonstrates the size reduction (in percentages) of the selection of schema-driven binary
serialization specifications listed in Table 5.5 in their best-case compressed forms given the compression formats
listed in Table 5.8 in comparison to the best-case compressed JSON [46] given the compression formats listed in
Table 5.8 and the input data listed in Table 5.3 and Table 5.4.
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7.5 Reproducibility
To encourage reproducibility for the benchmarking datasets, I follow every reproducibility level introduced by [71]. I
found that the implemented benchmark software matches the definition of Level 3, the highest-level of reproducibility,
as justified in the following sections.

• Automation. The benchmark software, from the generation of the serialized bit-strings to the generation of the
plots using Matplotlib 5, is automated through a GNU Make 6 declarative and parallelizable build definition.

• Testing. The POSIX shell and Python scripts distributed with the benchmark are automatically linted using the
shellcheck 7 and flake8 8 open-source tools, respectively. The serialization and deserialization procedures of
the benchmark are automatically tested as explained in subsection 5.2.5.

• Supported Environments. The benchmark software is ensured to work on the macOS (Intel processors) and
GNU/Linux operating systems. I do not make any effort to support the Microsoft Windows operating system,
but I expect the benchmark software to run on an msys2 9 or Windows Subsystem for Linux 10 environment
with minor changes at most. The benchmark is exclusively concerned with the byte-size of the bit-strings
produced by the binary serialization specifications. Therefore, the CPU, memory, and network bandwidth
characteristics of the test machine do not affect the results of the benchmark. No further conditions apart from
the exact software versions of the dependencies included and required by the project are necessary to replicate
the results.

• Documentation and Readability. The README file 11 in the repository contains precise instructions for run-
ning the benchmark locally and generate the data files and plots. The project documentation includes a detailed
list of the system dependencies that are required to succesfully execute every part of the benchmark and a
detailed list of the required binary serialization specifications, implementations, versions, and encodings. The
benchmark source code is compact and easy to understand and navigate due to the declarative rule definition
nature of GNU Make.

• DOI. The version of the benchmark software described in this study is archived with a DOI [149]. The DOI
includes the source code for reproducing the benchmark and the presented results.

• Dependencies. The benchmark software is implemented using established open-source software with the ex-
ception of the ASN-1Step 12 command-line tool, which is a proprietary implementation of ASN.1 [123] dis-
tributed by OSS Nokalva with a 30 days free trial. Every binary serialization specification implementation used
in the benchmark with the exception of ASN-1Step is pinned to its specific version to ensure reproducibility.
As explained in the online documentation, the benchmark software expects the ASN-1Step command-line tool
version 10.0.2 to be installed and globally-accessible in the system in order to benchmark the ASN.1 PER
Unaligned [124] binary serialization specification.

• Version Control. The benchmark repository utilises the git 13 version control system and its publicly hosted
on GitHub 14 as recommended by [108].

• Continuous Integration. The GitHub repository hosting the benchmark software is setup with the GitHub
Actions 15 continuous integration provided to re-run the benchmark automatically on new commits using a
GNU/Linux Ubuntu 20.04 LTS cloud worker. This process prevents changes to the benchmark software from
introducing regressions and new software errors. I make use of this process to validate GitHub internal and
external pull requests before merging them into the trunk.

5https://matplotlib.org
6https://www.gnu.org/software/make/
7https://www.shellcheck.net
8https://flake8.pycqa.org/
9https://www.msys2.org

10https://docs.microsoft.com/en-us/windows/wsl/
11https://github.com/jviotti/binary-json-size-benchmark#running-locally
12https://www.oss.com/asn1/products/asn-1step/asn-1step.html
13https://git-scm.com
14https://github.com/jviotti/binary-json-size-benchmark
15https://github.com/features/actions
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• Availability. The benchmark software and results are publicly available and governed by the Apache License
2.0 16 open-source software license. The results of the benchmark are also published as a website hosted
at https://www.jviotti.com/binary-json-size-benchmark/ using the GitHub Pages free
static hosting provider. The website provides direct links to the JSON [46] documents being encoded by
the benchmark and direct links to the schema definitions used in every case. Both the JSON documents and
the schema definitions are hosted in the benchmark GitHub repository to ensure their availability even if the
original sources do not exist anymore.

• Continuity. I plan to continue extending the benchmark software in the future to test new versions of the
current selection of binary serialization specifications and to include new JSON-compatible binary serialization
specifications. I hope for this project to become a collaborative effort to measure the space-efficiency of every
new JSON-compatible serialization specifications and I am comitted to accepting open-source contributions.

16https://www.apache.org/licenses/LICENSE-2.0.html
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8 | Introducing JSON BinPack: A Space-efficient JSON-compatible
Binary Serialization Specification

8.1 Requirements Specification
Every serialization specification is subjected to the common set of functional requirements listed in Table 8.1: S1 de-
scribes the presence of a serialization function, S2 describes the presence of a deserialization function and S3 states
that the deserialization function is the inverse of the serialization function. While some serialization specifications
enforce serialization functions to be deterministic, I consider such characteristic to be an optional feature. For exam-
ple, data structures that are inherently unordered can be serialized in a non-deterministic manner regarding ordering
while preserving their semantics.

Table 8.1: The common set of requirements that are implicit for any serialization specification. The fourth column
proposes tests to validate whether the requirements have been met.

Identifier Description Type Test

S1 A serialization specification shall describe
a function to convert input data into bit-
strings

Functional The implementation exposes a serializa-
tion function

S2 A serialization specification shall describe
a function to convert bit-strings into input
data

Functional The implementation exposes of deserial-
ization function

S3 The function to convert bit-strings into in-
put data shall reverse the process of the
function to convert input data into bit-
strings in all cases

Functional The domain of the serialization function
is often infinite. Software fuzzing is ap-
plied to validate that deserializing the re-
sult of serializing an input data structure
produces the original input data structure

The JSON BinPack binary serialization specification is designed to improve network performance and reduce
the operational costs of Internet-based software systems. Its architecture is further guided by the high-level non-
functional requirements listed in Table 8.2. R1 captures the intention to optimize for space-efficiency. As concluded
in chapter 7, the JSON-compatible binary serialization specifications that outperform the rest of the considered JSON-
compatible binary serialization specifications considered in terms of this requirement are ASN.1 PER Unaligned [124]
and Apache Avro [61]. R2 captures the intention to achieve strict JSON-compatibility to lower the barrier of adoption
given the dominance of JSON [46] in the context of Internet-based software systems. In Appendix B, I found Apache
Avro [61] to be the only schema-driven binary serialization specification that is strictly JSON-compatible, likely due
to the fact that its custom schema language is also expressed using the JSON [46] data model.

Table 8.2: The set of non-functional requirements that guide the design of JSON BinPack. The fourth column
proposes tests to validate whether the requirements have been met.

Identifier Description Type Test

R1 JSON BinPack shall be a space-efficient
serialization specification

Non-functional JSON BinPack is space-efficient if a
benchmark determines that its average
and median size-reductions are lower
than the ones from competing serializa-
tion specifications given a common set
of representative input data

R2 JSON BinPack shall be a strictly JSON-
compatible serialization specification

Non-functional The list of valid JSON [46] documents
is infinite. Software fuzzing is applied
to validate that the serialization function
can process every generated JSON doc-
ument
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8.2 Characteristics

8.2.1 Schema-driven
According to the benchmark results from chapter 7, Apache Avro [61], the most space-efficient schema-driven se-
rialization specification, results in in 73.5% median and 65.7% average size reduction in comparison to JSON [46].
While MessagePack [64], the most space-efficient schema-less serialization specification, results in 22.7% median
and 22.8% average size reduction in comparison to JSON [46].

Decision: In the interest of space-efficiency (R1 from Table 8.2), I design JSON BinPack as a schema-driven
binary serialization specification.

8.2.2 Sequential
In section 6.3, I group serialization specifications into two categories: sequential and pointer-based. The benchmark
results from chapter 7 show that in 26 out of the 27 benchmarked JSON documents, the smallest bit-string is produced
by a sequential binary serialization specification.

Decision: In the interest of space-efficiency (R1 from Table 8.2), I design JSON BinPack as a sequential binary
serialization specification.

8.2.3 Based on JSON Schema
As explained in section 3.2, JSON Schema [159] is the de-facto industry-standard schema language for JSON [46]
documents. Despite this fact, JSON Schema is not adopted as the schema language of any JSON-compatible schema-
driven binary serialization specification covered in chapter 6. However, there is interest in introducing JSON Schema
in the context of data serialization as proven by the existance of third-party tooling that attempt to convert be-
tween JSON Schema and other schema languages used by schema-driven serialization specifications such as Protocol
Buffers [67] 1 2 3, ASN.1 [123] 4 and Apache Avro 5. In subsection 8.2.1, I make a case for JSON BinPack to be a
schema-driven serialization specification. Therefore, the natural choice of a schema language is JSON Schema.

Decision: In the interest of JSON-compatibility (R2 from Table 8.2), I design JSON BinPack to adopt the JSON
Schema [159] schema language.

8.2.4 Diverse Encodings
My previous work [151] reveals that serialization specifications typically encode the same data types in different
manners. However, the benchmark results from chapter 7 show that no specific data type encoding is strictly superior
to the rest in terms of space-efficiency. Instead, each approach may offer distinctive space-efficiency characteristics
that excel in different input cases. In comparison to the serialization specifications covered in chapter 6 and chapter 7,
JSON BinPack attempts to embrace the contextual nature of data type encodings and provide multiple serialization
strategies to achieve space-efficiency for a wider range of input documents.

Decision: In the interest of space-efficiency (R1 from Table 8.2), I design JSON BinPack to support a diverse set
of encodings and to select space-efficient serialization strategies for each input document.

1https://github.com/devongovett/protobuf-jsonschema
2https://github.com/chrusty/protoc-gen-jsonschema
3https://github.com/okdistribute/jsonschema-protobuf
4https://asn1.io/json2asn/default.aspx
5https://github.com/fge/json-schema-avro
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8.3 Architecture

8.3.1 Overview

Figure 8.1: A container diagram based on the C4 software architecture visualization notation [23] for the JSON
BinPack schema-driven binary serialization specification. As discussed in this section, JSON BinPack consists of
three software modules: the Canonicalizer, the Encoder and the Mapper for which I provide complemental component
diagrams. I present C4 diagrams for each internal component in Figure 8.3, Figure 8.4 and Figure 8.5, respectively.

8.3.1.1 Schema Refinement

For interoperatility purposes, JSON [46] and JSON Schema [159] describe data types in a high-level and implementation-
independent manner. For example, JSON Schema [159] may define a JSON [46] value as a abstract homogeneous
array data type and do not mandate the array to be represented in memory as a consecutive sequence of values prefixed
by a header that defines the logical size of the array as some programming languages such as Java do [148]. Therefore,
the core goal of JSON BinPack is to unambiguously and bi-directionally map the high-level data types provided by
JSON [46] and JSON Schema [159] to low-level space-efficient counterparts. In order to provide these mappings,
JSON BinPack statically analyses the input JSON Schema [159] definition to derive encoding and decoding rules.
We may think of this process as a schema refinement phase that takes a high-level schema definition that describes an
abstract data type and augments it to produce a new schema definition, referred to as the encoding schema, that more
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precisely describes how to represent such abstract data type as a bit-string. The presence of an encoding schema def-
inition for the input data is not enough by itself to perform serialization and deserialization. To complement schema
refinement, I introduce an encoder phase that makes use of an encoding schema definition to guide the serialization
and deserialization processes.

8.3.1.2 Build Time Schema Refinement

In terms of the phases introduced in this section, the schema refinement phase is concerned with the high-level schema
definition while the encoder is concerned with the input data instance and the encoding schema definition. Schema-
driven serialization specifications typically exploit this separation of concerns to optimize for runtime-efficiency by
performing the phases that do not involve the input data at build time. Given the complexity of JSON Schema [159]
as discussed in section 3.2, the JSON BinPack schema refinement phase is computationally-expensive yet crucial
to achieve space-efficiency. JSON BinPack exploits this separation of concerns by allocating unbounded build time
resources to the schema refinement phase and its static analysis process to derive space-efficient encoding rules. The
schema-refinement phase is performed once per schema rather than once per input data instance, reducing the amount
of computation required to serialize and deserialize multiple input data instances described by the same schema
definition to a minimum.

8.3.1.3 Encoding Schema

Schema-driven serialization specifications such as Microsoft Bond [96], Cap’n Proto [146], Protocol Buffers [67]
and Apache Thrift [129] analyze schema definitions at build time to generate source code that performs serialization
and deserialization for any matching instance. In comparison to generic serialization and deserialization procedures
parameterized with schema definitions, tailor-made procedures created through code-generation typically result in
runtime-efficient serialization and deserialization at the expense of having to maintain code generators for multiple
programming languages. For simplicity, JSON BinPack refrains from generating source code and instead generates
an internal declarative low-level schema, the encoding schema, that is programming language agnostic. Refer to
Figure 8.2 for an example encoding schema.

Figure 8.2: An example of an JSON BinPack Encoding Schema. The left side of the figure shows a JSON Schema
[159] definition for a JSON [46] object with a single boolean property. The right side of the figure shows the corre-
sponding JSON BinPack Encoding Schema, which flattens the finite possible states of the original schema definition
into an 8-bit enumeration that consists of two values. The encoding property refers to an encoding defined by
the JSON BinPack Encoder component discussed in subsection 8.3.3. The TOP LEVEL 8BIT CHOICE INDEX
encoding shown in this example and its options are summarized in Table A.2.

8.3.1.4 Core Components

Figure 8.1 shows a C4 [23] diagram that presents the architecture of JSON BinPack. The schema refinement phase
of JSON BinPack is split into canonicalization and mapping parts. The following sections introduce the three core
components of JSON BinPack: the canonicalizer, the encoder and the mapper.
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8.3.2 Canonicalizer

Figure 8.3: A component diagram based on the C4 software architecture visualization notation [23] for the JSON
BinPack Canonicalizer container. The private components represent the set of formal transformation rules defined in
the Canonicalizer. The C4 container diagram that introduces this component is presented in Figure 8.1.

In subsection 8.2.1, I propose JSON BinPack as a schema-driven serialization format and in subsection 8.2.3, I
propose the adoption of JSON Schema [159] as its schema language. As discussed in subsubsection 3.2.3.1, JSON
Schema is a particularly expressive and complex schema language. To mitigate such complexity in the context of static
analysis, the Canonicalizer is a total function that maps JSON Schema definitions to equivalent but simpler JSON
Schema definitions according to a set formal transformations. The concept of simplifying JSON Schema definitions
based on formal transformations for static analysis purposes was originally introduced by [68]. I extend their work
by modernizing and extending their set of canonicalization rules. Figure 8.3 shows a C4 [23] component diagram for
the Canonicalizer container. The canonicalizer repeatedly applies the set of defined canonizalization transformations
rules to every subschema of a given JSON Schema definition until no more transformations are possible. A JSON
Schema definition that cannot be further modified by any canonizalization rule is considered to be a Canonical JSON
Schema. In order to prevent an infinite loop in the canonizalization algorithm, canonizalization rules do not conflict
with each other and the pre-condition of a given canonizalization rule does not hold after such canonizalization rule
has been applied to the schema.

For example, using the notation proposed by [68], a canonicalization rule that removes duplicate branches from
the allOf logical applicator specified in the Applicator vocabulary [159] discussed in section 3.2 is defined as
follows:

allOf ∈ dom(s) ∧ #s.allOf 6= #{x | s.allOf}
s→ s[allOf 7→ seq {x | s.allOf}]

(8.1)

The JSON Schema definition is denoted as s. The expression above the bar is the rule pre-condition and the
expression below the bar is the rule transformation. The rule transformation is applied only if the pre-condition holds.
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In this case, the allOf sequence is de-duplicated only if s declares the allOf keyword to a sequence that includes
duplicate elements.

8.3.2.1 Objectives

The transformation rules defined in the Canonicalizer component are guided by the following objectives:

• Avoid mixing keywords for multiple data types. To simplify the production of schemas that describe union
types, JSON Schema permits the schema-writer to declare keywords that operate on different data types in
the same scope. At runtime, JSON Schema implementations must only take into consideration the keywords
that apply to the instance data type. The canonizalization rules transform heterogeneous schemas into simpler
homogeneous schemas combined using logic applicators.

• Re-write advanced keywords in terms of simpler keywords. Schema-writers may inadvertently produce
schema definitions that make unnecessary use of advanced JSON Schema keywords. Whenever possible, I
detect these cases and re-write the schemas using combinations of simpler keywords. For example, a complex
JSON Schema definition that has a finite set of matching instances can be re-written as an enumeration.

• Surface implicit constrains. JSON Schema definitions may include implicit constraints that schema-writers
typically do not explicitly define given the intrinsic properties of certain data types (such as integers) or the
default values of certain JSON Schema keywords. These constrains are surfaced and explicitly defined in the
schema.

• Inline references to external schemas. JSON Schema definitions may include external schema definitions that
are typically resolved using the HTTP [55] protocol. Static analysis is simplified if the program can operate on
the entire schema definition without requiring networking capabilities.
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8.3.3 Encoder

Figure 8.4: A component diagram based on the C4 software architecture visualization notation [23] for the JSON
BinPack Encoder container. The C4 container diagram that introduces this component is presented in Figure 8.1.

In subsection 8.2.4, I make a case for the contextual nature of space-efficient data encodings and propose JSON
BinPack to implement a diverse set of encodings that are space-efficient in different scenarios. The Encoder software
component consists of a set of parameterized serialization and deserialization procedures targetting data types given
different sets of contrains. In Table 8.2, I require that JSON BinPack shall be strictly JSON-compatible [46]. There-
fore, the set of serialization and deserialization procedures defined in the Encoder software component are bounded
by the JSON [46] data model. However, the set of serialization and deserialization procedures defined in the Encoder
software component are agnostic to the schema language used to validate and describe the input data. Figure 8.4
shows a C4 [23] component diagram for the Encoder container. The Encoder defines a proxy serialization procedure
that given a JSON document and a matching Encoding Schema, serializes the JSON document into a bit-string using
the specific encoding implementation declared by the Encoding Schema. The deserialization process mirrors the seri-
alization process through a proxy deserialization procedure that deserializes a bit-string into a JSON document using
the specific encoding implementation declared by the Encoding Schema.

8.3.4 Mapper
The Mapper software component is the bridge between a Canonical JSON Schema produced by the Canonical-
izer software component defined in subsection 8.3.2 and an Encoding Schema consumed by the Encoder software
component defined in subsection 8.3.3. The Mapper statically analyses the input Canonical JSON Schema and de-
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Figure 8.5: A component diagram based on the C4 software architecture visualization notation [23] for the JSON
BinPack Mapper container. The C4 container diagram that introduces this component is presented in Figure 8.1.

terministically computes which encodings and respective encoding parameters defined by the Encoder are likely to
produce the most space-efficient bit-strings for any JSON [46] instance that successfully validates against the given
schema. Figure 8.5 shows a C4 [23] component diagram for the Mapper container.

For example, a mapping rule that associates a JSON Schema [159] definition that describes a bounded integer
where the range of possible values is representable in 8-bits to a fictitious UNSIGNED INTEGER 8BIT encoding
that takes a lower bound parameter is defined as follows:

s.type = integer ∧ {minimum,maximum} ⊆ dom(s) ∧ s.maximum− s.minimum < 28

UNSIGNED INTEGER 8BIT(〈|minimum ; s.minimum|〉)
(8.2)

The JSON Schema definition is denoted as s. The expression above the bar is the rule pre-condition and the
expression below the bar is the encoding declaration.
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8.4 Implementation
I developed an open-source proof-of-concept implementation of the JSON BinPack serialization specification hosted
on GitHub 6 consisting of 37 canonicalization rules, 35 mapping rules and 34 parameterized encodings summarized in
Appendix A that cover every data type supported by the JSON [46] data model. At this point in time, not many JSON
Schema [159] implementations 7 support 2020-12, the latest draft discussed in section 3.2. AJV 8, the dominant and
up-to-date JSON Schema implementation, is written to target the JavaScript [47] programming language. Therefore,
I design the first JSON BinPack implementation around such ecosystem. The proof-of-concept implementation is
developed using the Node.js v14.17.1 9 JavaScript runtime, the TypeScript v4.2.4 10 type-based JavaScript transpiler
and the AJV v8.6.0 JSON Schema implementation. Figure 8.6 shows an example JavaScript [47] program that makes
use of the proof-of-concept implementation. This proof-of-concept implementation is not production-ready. It is
intended to give an early view of the potential of JSON BinPack to motivate the development of a more runtime-
efficient and production-ready implementation.

Figure 8.6: An example JavaScript [47] program that uses the proof-of-concept JSON BinPack implementation to
obtain an Encoding Schema and use it to perform serialization and deserialization. First (1), the example JSON
Schema 2020-12 [159] definition is converted into an Encoding Schema as discussed in subsubsection 8.3.1.3
using the jsonbinpack.compileSchema function. Then (2), the resulting Encoding Schema is used to
serialize an example JSON [46] document using the jsonbinpack.serialize function. Finally (3), the
jsonbinpack.deserialize function is used to deserialize the resulting bit-string back into the original JSON
document.

To showcase the inner workings of JSON BinPack, the test JSON [46] document introduced in subsection 5.1.3
is serialized using JSON BinPack and the resulting bit-strings are explained in Figure 8.7 and Figure 8.9 as done
for other serialization specifications in the study presented in chapter 6. In Figure 8.7, the test JSON document is
serialized using the JSON Schema [159] definition shown in Figure 8.8. Its corresponding Encoding Schema, which
is too large to be included here, can be found on GitHub 11. Such Encoding Schema makes use of 9 out of the 34

6https://github.com/jviotti/jsonbinpack
7https://json-schema.org/implementations.html
8https://ajv.js.org
9https://nodejs.org

10https://www.typescriptlang.org
11https://github.com/jviotti/jsonbinpack/blob/c029870287bedfa54afe7b4b5d39e2e95ecff91f/test/e2e/
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encodings defined in Appendix A. In Figure 8.9, I showcase the schema-less mode of JSON BinPack produced by
the encoding summarized in Table A.9 by serializing the test JSON document with the wildcard JSON Schema [159]
definition {} that matches every instance.

Figure 8.7: Annotated hexadecimal output of serializing the test input data introduced in subsection 5.1.3 using the
JSON BinPack proof-of-concept implementation. The corresponding JSON Schema [159] definition used to produce
this bit-string is shown in Figure 8.8. The encodings utilized are summarized in Appendix A.

ox-test/schema-driven/encoding.json
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Figure 8.8: The JSON Schema 2020-12 [159] definition used to serialize the test input data introduced in subsec-
tion 5.1.3 using the JSON BinPack proof-of-concept implementation. The resulting bit-string is shown in Figure 8.7.
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Figure 8.9: Annotated hexadecimal output of serializing the test input data introduced in subsection 5.1.3 using the
JSON BinPack proof-of-concept implementation in schema-less mode by providing the {} wildcard JSON Schema
[159] definition that matches every instance. The encodings utilized are summarized in Table A.10 and Table A.11.
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8.5 Testing
The JSON BinPack serialization specification proof-of-concept implementation includes a comprehensive automated
test suite 12 consisting of 1942 test cases categorized as unit tests, property tests and end-to-end tests. The entire test
suite is executed for every commit using GitHub Actions 13 to support continuous integration.

8.5.1 Unit Testing
The JSON BinPack proof-of-concept implementation introduced in section 8.4 defines 616 unit tests that exercise the
serialization specification at a functional level. These unit tests were implemented using the TypeScript 14 program-
ming language and the node-tap open-source unit testing framework 15 while following the Test Driven Development
[11] methodology. Refer to Figure 8.10 for an example unit test from the test suite 16 of integer encodings of the
encoder component introduced in subsection 8.3.3.

Figure 8.10: An example unit test that asserts that serializing the negative integer -25200 as a Little
Endian Base 128 (LEB128) variable-length ZigZag-encoded [151] signed integer using the JSON BinPack
ARBITRARY MULTIPLE ZIGZAG VARINT encoding summarized in Table A.1 results in the 3-byte bit-string
0xdf 0x89 0x03. The assertions executed by the unit test are highlighted.

8.5.2 Property-based Testing
[35] introduce QuickCheck, a tool to automate the process of generating test cases using the Haskell [94] functional
programming language based on a formal definition of a functional property. QuickCheck generates a finite amount
of input data based on a formal specification to automatically explore the problem space and assert that the functional
property holds in every tested case. This testing technique is referred to as property-based testing [57] and is consid-
ered a variant of software fuzzing [134]. An open-source property-based testing framework for the JavaScript [47]
programming language inspired by QuickCheck called fast-check 17 is used to define and test 27 formal properties
covering the JSON BinPack serialization and deserialization functions of all supported data types. Refer to Figure 8.11
for an example property-based test from the test suite 18 of the encoder component introduced in subsection 8.3.3.

Using this technique highlighted several types of issues on the encoder component early on in the development
phase:

• Offset arithmetic errors detected by randomizing the start offset of the buffer to serialize to and deserialize
from.

• Buffer overflows detected by generating large input data.

12https://github.com/jviotti/jsonbinpack/tree/9d7b533012a38476ee359cdb76ec4b1e180051f7/test
13https://github.com/features/actions
14https://www.typescriptlang.org
15https://node-tap.org
16https://github.com/jviotti/jsonbinpack/blob/9d7b533012a38476ee359cdb76ec4b1e180051f7/test/

encoder/integer/encode.spec.ts#L217-L225
17https://github.com/dubzzz/fast-check
18https://github.com/jviotti/jsonbinpack/blob/3cb625e8842462cb475ea4cdbf18c56b39a051bd/test/

encoder/any.spec.ts#L135-L157
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Figure 8.11: A simple property-based test that asserts that for an infinite set of scalar JavaScript [47] values, serializ-
ing and deserializing the input data using the ANY PACKED TYPE TAG BYTE PREFIX encoding summarized in
Table A.9 at a random offset between 0 and 10 of a test buffer reads and writes the same amount of bytes and results
in the original input data. The domain of the property and its assertion are highlighted.

• Numeric truncation and overflows on integer and real number encodings detected by generating large numeric
values.

• Functional mismatches between serialization and deserialization function pairs for certain encodings detected
with specific encoding parameters and combinations of input data.

8.5.3 End-to-End Testing

8.5.3.1 Input Data From Previous Research

I define automated end-to-end test cases that make use of the JSON BinPack public programming interface to generate
an encoding schema and serialize and deserialize the 27 JSON [46] documents introduced in subsection 5.2.3 and the
example analysis JSON [46] document introduced in subsection 5.1.3. Each of these documents are serialized in
schema-driven and schema-less modes resulting in 56 end-to-end test cases. The test runner asserts that serializing
and deserializing every input document results in the respective original input document.

8.5.3.2 The JSON Schema Official Test Suite

The JSON Schema organization maintains a publicly-available open-source test suite 19 to help JSON Schema im-
plementations adhere to the Core [159] and Validation [160] JSON Schema specifications. The test suite consist of a
set of contrived schema that showcase features of the official JSON Schema vocabularies for every release of JSON
Schema. Refer to Figure 8.12 for an example test case 20. The test suite that targets the latest version of JSON Schema
at commit eaa5bff 21 is organized as a set of 47 required and 24 optional suites defining a total of 326 schemas
associated with a total of 1331 instances that must either validate or fail against the respective schemas.

19https://github.com/json-schema-org/JSON-Schema-Test-Suite
20https://github.com/json-schema-org/JSON-Schema-Test-Suite/blob/eaa5bffc22658ebc96bb0f3f044fca8be82afc63/

tests/draft2020-12/allOf.json#L218-L243
21https://github.com/json-schema-org/JSON-Schema-Test-Suite/tree/eaa5bffc22658ebc96bb0f3f044fca8be82afc63
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Figure 8.12: An example test case that covers how the allOf applicator keyword from the Core [159] must behave
when nested. The JSON Schema definition provided in the test case and the associated instances are highlighted.

The JSON BinPack proof-of-concept implementation uses the official JSON Schema test suite to derive 1172
automated end-to-end test cases. The JSON BinPack test suite generates encoding schemas from every schema
definition provided by the JSON Schema official test suite and uses the resulting encoding schemas to serialize and
deserialize any declared instance that validates against the given schemas. The JSON BinPack proof-of-concept
implementation uses 63 out of the 71 suites provided by the official JSON Schema tests. The dynamicRef 22

and float-overflow 23 suites are omitted as they crash the latest version of one of the external dependencies of
the Canonicalizer component at the time of this writing 24. JSON Schema defines the format keyword from the
Validation specification [160] in two mutually incompatible vocabularies that affect the semantics of such keyword
and expects implementations to choose one: format-annotation and format-assertion. The former
vocabulary defines the format keyword as an annotation that takes no effect during validation. Therefore, I choose
to support the latter and not test the format-annotation suite 25. For simplicity in the implementation of the
JSON BinPack proof-of-concept test runner, the JSON Schema test suites that require resolving external schemas
over the HTTP [55] protocol are not taken into account. This includes the refRemote 26, ref 27, id 28, anchor

22https://github.com/json-schema-org/JSON-Schema-Test-Suite/blob/eaa5bffc22658ebc96bb0f3f044fca8be82afc63/
tests/draft2020-12/dynamicRef.json

23https://github.com/json-schema-org/JSON-Schema-Test-Suite/blob/eaa5bffc22658ebc96bb0f3f044fca8be82afc63/
tests/draft2020-12/optional/float-overflow.json

24https://apitools.dev/json-schema-ref-parser/
25https://github.com/json-schema-org/JSON-Schema-Test-Suite/blob/eaa5bffc22658ebc96bb0f3f044fca8be82afc63/

tests/draft2020-12/format.json
26https://github.com/json-schema-org/JSON-Schema-Test-Suite/blob/eaa5bffc22658ebc96bb0f3f044fca8be82afc63/

tests/draft2020-12/refRemote.json
27https://github.com/json-schema-org/JSON-Schema-Test-Suite/blob/eaa5bffc22658ebc96bb0f3f044fca8be82afc63/

tests/draft2020-12/ref.json
28https://github.com/json-schema-org/JSON-Schema-Test-Suite/blob/eaa5bffc22658ebc96bb0f3f044fca8be82afc63/

tests/draft2020-12/id.json
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29 and unknownKeyword 30 suites.

29https://github.com/json-schema-org/JSON-Schema-Test-Suite/blob/eaa5bffc22658ebc96bb0f3f044fca8be82afc63/
tests/draft2020-12/anchor.json

30https://github.com/json-schema-org/JSON-Schema-Test-Suite/blob/eaa5bffc22658ebc96bb0f3f044fca8be82afc63/
tests/draft2020-12/unknownKeyword.json
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9 | A Benchmark of JSON BinPack

9.1 Methodology
To evaluate the JSON BinPack schema-driven binary serialization specification against the requirements described
in section 8.1, I benchmark the JSON BinPack proof-of-concept implementation introduced in section 8.4 using the
open-source space-efficiency benchmark framework for JSON-compatible binary serialization specifications imple-
mented as part of chapter 7. The approach is the following:

1. Include JSON BinPack. Extend the open-source automated benchmark software implemented as part of
chapter 7 to recognize JSON BinPack as a JSON-compatible binary serialization specification.

2. Schema Definitions. Write JSON Schema [159] definitions for the 27 input JSON [46] documents listed in
subsection 5.2.3. As discussed in subsubsection 3.2.3.2, JSON Schema [159] definitions are as strict or loose as
the schema-author decides. For this reason, two JSON Schema definitions are written for each of the 27 JSON
[46] documents: a strict and a loose schema.

3. Benchmark. Use the automated benchmark software to serialize and de-serialize the 27 real-world JSON [46]
documents listed in subsection 5.2.3 with the JSON BinPack binary specification using the strict and loose
JSON Schema [159] definitions discussed in the previous step. section 1.5 proposes the idea of schema-less
as subset of schema-driven. Under this concept, I consider serializing the input data using a loose schema
definition that matches any instance as executing the JSON BinPack binary specification in schema-less mode.
Conversely, I consider serializing the input data using the strict schema definition as executing the JSON Bin-
Pack binary specification in schema-driven mode.

4. Results. Provide plots to visualize the benchmark results of JSON BinPack in comparison to the 14 JSON-
compatible serialization specifications and encodings listed in section 5.2.

5. Conclusions. Discuss the benchmark results and how JSON BinPack compares to the 14 JSON-compatible se-
rialization specifications and encodings listed in section 5.2 in terms of space-efficiency and JSON-compatibility.

9.2 Benchmark
This section presents bechmark results for the 27 JSON [46] documents considered by chapter 7. For each plot,
the schema-driven serialization specifications that produce the smallest bit-strings for the corresponding document
are highlighted in red and the schema-less serialization specifications that produce the smallest bit-strings for the
corresponding document are highlighted in orange. JSON BinPack (Schema-driven) corresponds to executing JSON
BinPack with a strict schema definition and JSON BinPack (Schema-less) corresponds to executing JSON BinPack
with the wildcard schema definition that matches any instance. In the interest of brevity, I provide condensed bar plots
that do not take compression into account. These plots are shown in Figure 9.1, Figure 9.2, Figure 9.3 and Figure 9.4
in groups of 8. For the interested reader, the detailed plots that take compression into account can be found in the
open-source benchmark results published on GitHub 1.

1https://github.com/jviotti/binary-json-size-benchmark
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Figure 9.1: The benchmark results for the first set of input data listed in subsection 5.2.3.
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Figure 9.2: The benchmark results for the next set of input data listed in subsection 5.2.3.
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Figure 9.3: The benchmark results for the next set of input data listed in subsection 5.2.3.
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Figure 9.4: The benchmark results for the final set of input data listed in subsection 5.2.3.

9.3 Discussion

Table 9.1: A summary of the size reduction provided by the JSON BinPack binary serialization specification proof-
of-concept implementation introduced in section 8.4 in both schema-driven and schema-less mode in comparison to
JSON [46] given the input data listed in subsection 5.2.3.

Serialization Specification Size Reductions in Comparison To JSON Negative CasesMaximum Minimum Range Median Average

JSON BinPack (Schema-driven) 100% 26.9% 73 86.7% 78.7% 0 / 27 (0%)
JSON BinPack (Schema-less) 72.5% 10.2% 62.2 30.6% 30.5% 0 / 27 (0%)
Averages 86.2% 18.6% 67.6 58.6% 54.6% 0%

9.3.1 JSON BinPack (Schema-driven) in Comparison to Uncompressed JSON
As demonstrated in section 9.2, the JSON BinPack schema-driven binary serialization specification, denoted as JSON
BinPack (Schema-driven), is as space-efficient or more space-efficient than every other serialization specification for
the 27 proposed input data considered by chapter 7. Unlike any other considered binary serialization specification,
JSON BinPack is strictly space-efficient in comparison to JSON [46] given the input data.

In chapter 7, I find that the most space-efficient JSON-compatible binary serialization specifications are ASN.1
PER Unaligned [124] and Apache Avro [61]. ASN.1 PER Unaligned [124] results in 71.4% and 65.7% median and
average size reductions with a maximum of 98.5% and a minimum of negative 7.9%. Apache Avro [61] results
in 73.5% and 65.7% median and average size reductions with a maximum of 100% and a minimum of negative
48.9%. In comparison, JSON BinPack produces strictly space-efficient results with a smaller range and no negative
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cases: 86.7% and 78.7% median and average size reductions with a maximum of 100% and a minimum of 26.9% as
shown in Table 9.1. Additionally, JSON BinPack provides improvements in terms of space-efficiency in comparison
to the best-performing schema-driven binary serialization specifications for documents that are highly redundant
or nested according to the JSON [46] taxonomy introduced in chapter 4. For example, JSON BinPack produces
bit-strings that are 82%, 75% and 60% smaller than the best-performing schema-driven alternatives for TravisCI
Notifications Configuration (see Figure 9.3), TSLint Linter Definition (Multi-rule) (see Figure 9.4) and GeoJSON
Example Document (see Figure 9.1), respectively.

JSON BinPack matches but not increases the size reduction characteristics provided by the most space-efficient
serialization specifications in 8 out of the 27 cases. In terms of the taxonomy for JSON [46] documents introduced
in chapter 4, this list includes 5 out of the 7 documents considered boolean and 3 out of the 6 documents considered
textual and non-redundant. These 8 documents represent cases where ASN.1 PER Unaligned [124], Apache Avro
[61] and Protocol Buffers [67] perform at or close to the optimal level in terms of space-efficiency. For example,
JSON BinPack and Protocol Buffers [67], and JSON BinPack, Apache Avro [61] and Protocol Buffers [67], serialize
the CommitLint Configuration (Basic) Tier 1 Minified < 100 bytes, boolean, non-redundant and flat (see Figure 9.1)
and the SAP Cloud SDK Continuous Delivery Toolkit Configuration Tier 1 Minified < 100 bytes, boolean, redundant
and flat (see Figure 9.3) JSON [46] documents, respectively, into 0-byte bit-strings.

9.3.2 JSON BinPack (Schema-less) in Comparison to Uncompressed JSON
As explained in section 9.1, I also benchmark JSON BinPack in schema-less mode by serializing every input JSON
[46] document with a loose JSON Schema [159] definition that matches every instance. As shown in section 9.2, the
schema-less mode of the JSON BinPack binary serialization specification, denoted as JSON BinPack (Schema-less),
is as space-efficient or more space-efficient than every other schema-less serialization specification considered by
chapter 7 for the 27 proposed input data. Like CBOR [17] and MessagePack [64], JSON BinPack in schema-less
mode is strictly space-efficient in comparison to JSON [46]. However, JSON BinPack in schema-driven mode is
strictly space-efficient in comparison to JSON BinPack in schema-less mode.

In chapter 7, I find that the most space-efficient JSON-compatible binary schema-less serialization specifications
are CBOR [17] and MessagePack [64]. CBOR [17] results in 22.5% and 22.4% median and average size reductions
with a maximum of 43.2% and a minimum of 6.8%. Similarly, MessagePack [64] results in 22.7% and 22.8% median
and average size reductions with a maximum of 43.2% and a minimum of 6.8%. In comparison, JSON BinPack in
schema-less mode produces strictly space-efficient results: 30.6% and 30.5% median and average size reductions with
a maximum of 72.5% and a minimum of 10.2% as shown in Table 9.1. Additionally, JSON BinPack in schema-less
mode provides significant improvements in terms of space-efficiency in comparison to the best-performing schema-
less binary serialization specifications for documents that have a high-degree of nesting according to the JSON [46]
taxonomy defined in chapter 4. For example, JSON BinPack produces bit-strings that are 27.7%, 22% and 18.9%
smaller than the best-performing schema-less alternatives for GeoJSON Example Document (see Figure 9.1), Open-
Weather Road Risk API Example (see Figure 9.3) and CommitLint Configuration (see Figure 9.1), respectively. Fur-
thermore, JSON BinPack in schema-less mode produces space-efficient results in comparison to every schema-driven
binary serialization specification for GeoJSON Example Document (see Figure 9.1) and TravisCI Notifications Con-
figuration (see Figure 9.3), only second to JSON BinPack executed in schema-driven mode.

JSON BinPack in schema-less mode matches but not increases the size reduction characteristics provided by the
most space-efficient schema-less serialization specifications in 11 out of 27 cases. In terms of the taxonomy for
JSON [46] documents defined in chapter 4, this list includes 9 out of the 12 documents considered Tier 1 Minified
< 100 bytes and 2 out of the 2 documents considered Tier 2 Minified ≥ 100 < 1000 bytes and boolean. These 11
documents represent cases where both CBOR [17] and MessagePack [64] perform close to the optimal level in terms
of space-efficiency for a schema-less serialization specification.

9.3.3 JSON BinPack in Comparison to Compressed JSON
In chapter 7, I conclude that general-purpose data compression tends to yield negative results for JSON [46] docu-
ments that are Tier 1 Minified < 100 bytes according to the proposed taxonomy given that the auxiliary data structures
encoded by dictionary-based compressors may exceed the size of such small input documents. However, leaving Tier
1 Minified < 100 bytes documents aside, best-case compressed JSON [46] is space-efficient in comparison to the
considered schema-less binary serialization specifications in 86.6% of the cases. Leaving Tier 1 Minified < 100
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Table 9.2: A summary of the size reduction provided by the JSON BinPack binary serialization specification proof-
of-concept implementation introduced in section 8.4 in both schema-driven and schema-less mode in comparison to
the best case scenarios of compressed JSON [46] given the compression formats listed in subsection 5.2.6 and the
input data listed in subsection 5.2.3.

Serialization Specification Size Reductions in Comparison To Compressed JSON Negative CasesMaximum Minimum Range Median Average

JSON BinPack (Schema-driven) 100% 5.65% 94.3 76.1% 66.8% 0 / 27 (0%)
JSON BinPack (Schema-less) 69.6% -146.4% 216.1 7.4% -5.27% 13 / 27 (48.1%)
Averages 84.4% -70.3% 155.2 41.7% 30.7% 24%

bytes documents aside, best-case compressed JSON [46] is strictly space-efficiency in comparison to the considered
schema-driven binary serialization specifications in 33.3% of the cases.

While JSON BinPack in schema-less mode matches or outperforms the alternative schema-less binary serializa-
tion specifications considered in chapter 7 as shown in subsection 9.3.2, best-case compressed JSON [46] is space-
efficient in comparison to JSON BinPack in schema-less mode in 13 out of the 27 considered cases as shown in
Table 9.2. Of these 13 negative cases, 8 documents are considered textual according to the taxonomy defined in
chapter 4. However, unlike the other considered schema-driven binary serialization specifications, JSON BinPack
in schema-driven mode is space-efficient in comparison to best-case compressed JSON [46] as shown in Table 9.2
in terms of the median and average with size reductions of 76.1% and 66.8%, respectively. Existing literature [66]
[4] show that compressed textual schema-less serialization specifications such as JSON [46] can outperform com-
pressed and uncompressed schema-driven binary serialization specifications in terms of space-efficiency. However,
I conclude that a space-efficient schema-driven serialization specification such as JSON BinPack can outperform
general-purpose data compression.
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10 | Schema Evolution

10.1 The Problem of Schema Compatibility
Schema evolution is the problem of updating a schema definition while ensuring that the programs relying on it can
continue to operate. The study of schema evolution originated in the context of relational databases to evolve database
schemas without disrupting client applications [118]. In the context of serialization specifications, schema evolution
is concerned with how bit-string producers and bit-string consumers can intercommunicate despite future updates to
the structure of the bit-strings they are concerned with.

Figure 10.1: In both of these cases, the producer serializes a data structure using one version of the schema and the
consumer attempts to deserialize the resulting bit-string using another version of the schema. Schema evolution is
concerned with whether the consumer will succeed in obtaining the original data structure or not.

As discussed in section 1.4, programs using schema-driven serialization specifications must know in advance
the schema definitions of the messages they are expecting to exchange. This problem is exacerbated by the fact
that schema definitions are typically updated in response to new or changing requirements. [98] state that software
requirements continuously change and as a result of these changes software projects tend to fail. Schema evolution
is an important topic in the context of schema-driven serialization specifications as updating a schema definition
may result in a risky and expensive operation that requires re-compilation and coordinated re-deployment of all the
programs relying on such schema.

Two schemas are compatible if one schema can deserialize a bit-string produced by the other schema and recover
the original information. There are three levels of schema compatibility:

• Backwards. The first schema is backwards-compatible with respect to the second schema if the first schema
can deserialize data produced by the second schema.

• Forwards. The first schema is forwards-compatible with respect to the second schema if the second schema
can deserialize data produced by the first schema.

• Full. The new schema is fully-compatible with respect to the old schema if it is both backwards and forwards
compatible with respect to the old schema.

We can think of a schema as a set of its valid instances where the following rules apply:
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• A backwards or forwards compatible transformation to the schema expands or confines the set of its valid
instances, respectively. A fully-compatible transformation to the schema keeps the set of its valid instances
intact.

• A schema transformation results in an incompatible schema if neither of the sets is a subset of the other.

• A schema is fully-compatible with respect to itself.

• The first schema is backwards-compatible with respect to the second schema if and only if the second schema
is forwards-compatible with respect to the first schema.

• Compatibility is a transitive property. A schema is transitive backwards, transitive forwards, or transitive fully-
compatible with respect to a set of schemas if it is backwards, forwards, or fully compatible with respect to
each of the schemas in the set, respectively.

10.2 Deploying Schema Transformations
Consider a system involving a set of consumers and a set of producers that exchange information using a schema-
driven serialization specification. In such a system, the rules for deploying compatible schema transformations with
zero-downtime are as described in Table 10.1. Deploying incompatible schema transformations typically involves
re-deploying all consumers and producers at the same time or including multiple incompatible schemas in each of the
programs and adding application-specific logic to decide which schema to use when.

The same program in the system might be both a producer and a consumer. In this case, consider the program to
use one schema to produce data and another schema to consume data where the two schemas may be equal. Therefore,
each of the schemas within the same program can be deployed separately using the rules described in Table 10.1.

Table 10.1: These are the rules for deploying compatible schema transformations with zero-downtime. For ex-
ample, it is safe to deploy a forwards-compatible schema transformation to any producer. However, deploying a
forwards-compatible schema transformation to any consumer requires first deploying the schema transformation to
all producers.

Backwards-compatible
schema transformation

Forwards-compatible
schema transformation

Fully-compatible schema
transformation

Deploy to Producer Deploy transformation to
consumers first

Safe Safe

Deploy to Consumer Safe Deploy transformation to
producers first

Safe

10.3 Types of Compatibility Resolution
Every schema-driven serialization specifications discussed in this study allows the schema-writer to perform certain
schema transformations in compatible manners. I found that we can categorize schema-driven serialization spec-
ifications into two groups based on how they approach schema compatibility resolution: data-based resolution or
schema-based resolution.

Data-based resolution. Every schema-driven serialization specification discussed in this study except for Apache
Avro [61] falls into this category. In this type of schema compatibility resolution, the serialization specification tries
to understand the data by deserializing the bit-string as if it was produced with the new schema, accomodating to
potential mismatches at runtime.

Schema-based resolution. This approach is pioneered by Apache Avro [61], which refers to it as symbolic
resolution. In comparison to the other schema-driven serialization specifications analyzed in this study, an application
deserializing an Apache Avro bit-string has to provide both the exact schema that was used to produce the bit-string
and the new schema. The implementation attempts to resolve the differences between the schemas before deserializing
the bit-string in order to determine how to adapt any instance to the new representation. The bit-string is deserialized
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using the old schema and transformed to match the new schema. [152] briefly discusses the problem of integrating
heterogenous JSON datasets by resolving differences at the schema-level using a similar approach. [156] propose a
similar approach based on version control systems where the codebase only maintains the latest schema definition
and code to upgrade older bit-strings to the latest version is auto-generated based on the project commit history.

Discussion. I found that implementations of data-based resolution schema-driven serialization specifications,
with some exceptions, tend to perform little runtime checks to ensure data consistency, presumably for performance
reasons. For example, if the schema declares that the piece of data to follow is a Little Endian 64-bit unsigned
integer, then the deserialization specification may blindly try to interpret the next 64-bits of the bit-string as such,
resulting in many cases in silently-incompatible unpredictable results rather than informative runtime exceptions. In
comparison to data-based resolution schema-driven serialization specifications, I found that schema-based resolution
tends to produce informative runtime exceptions rather than unpredictable silently-incompatible results. However,
schema-based resolution specifications require the consumer to know the exact schema that was used to produce the
data and have it available at the deserialization process which may result in more complicated schema transformation
deployments.

Based on the schema evolution experiments performed in Appendix C, I conclude that none of these approaches
produce specifications that are clearly more advantageous with regards to compatible schema transformations: with
some specification-specific exceptions, most specifications tend to support the same compatible schema transforma-
tions.

10.4 JSON Schema Evolution
The problem of schema evolution in the context of JSON Schema [159] is not unique to data serialization. Any
software system that uses JSON Schema [159] to define an interface based on a data structure for inter-operatiblity
purposes faces the problem of schema evolution when making changes to such data structure. The 7 schema-driven
binary serialization specification covered in [151] implement non-interchangeable custom schema languages that are
only maintained for the purpose of data serialization within a given serialization specification. In comparison to
these custom schema languages, JSON Schema [159] is a general purpose extensible schema language for JSON
[46] documents with broad applicability across use cases and industries. As a consequence of such generality, JSON
Schema features a vibrant community that implements open-source tooling 1 to tackle foundational problems such as
schema evolution in a generic manner.

[68] and [63] study the problem of schema containment in the context of JSON Schema [159] evolution. This
problem is concerned with checking whether a JSON Schema definition is a subset of another JSON Schema defi-
nition. While schema containment answers whether compatibility is preverved across multiple versions of a JSON
Schema definition, schema containment does not solve the schema mapping problem: how an instance that matches
a specific JSON Schema definition version can be automatically transformed to match a different schema version
without losing its semantics. The Ink & Switch 2 research organization focused on distributed local-first software
implements Project Cambria 3, an open-source software library that implements a schema-based resolution approach
to schema evolution with support for JSON Schema [159]. In comparison to schema containment, Cambria uses the
concept of a lens, a data structure that defines a bi-directional transformation between two other data structures as
defined in [72], to associate two schema definitions. With Cambria, lenses are JSON [46] documents that are used
to automatically transform JSON [46] documents that match a JSON Schema [159] definition into JSON [46] docu-
ments that match another JSON Schema [159] definition, and vice-versa. Refer to Figure 10.2 for an example. While
Cambria implements a language to define lenses and an engine to apply a lens to a JSON Schema [159] definition, the
schema-writer is expected to manually write the lenses that accurately associate the JSON Schema [159] definitions
used by the given software system. To simplify the schema evolution process, I envision that Cambria can be extended
to attempt to automatically derive a lens out of two versions of a JSON Schema [159] definition.

To avoid reinventing the wheel, I tap into the JSON Schema [159] ecosystem and propose that users of JSON
BinPack adopt a readily available solution to schema evolution that implements schema-based resolution such as
Project Cambria.

1https://json-schema.org/implementations.html
2https://www.inkandswitch.com
3https://www.inkandswitch.com/cambria/
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Figure 10.2: An example of using Cambria to define a lens that associates two JSON Schema definitions adapted
from the Cambria research essay. The lens data structure is used to convert any JSON [46] document that matches the
JSON Schema [159] definition at the left to a JSON [46] document that matches the JSON Schema [159] definition
at the right, and vice-versa.
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11 | Reflections

11.1 Understanding Existing Solutions
This dissertation aimed to advance the state of the art in JSON-compatible space-efficient serialization. Therefore,
attaining extensive knowledge of the inner workings of the existing solutions was a pre-requisite. However, I found
that existing publications do not explore JSON-compatible serialization specifications beyond trivial examples. This
was a motivation to write and publish the paper A Survey of JSON-compatible Binary Serialization Specifications
[151]. Filling that gap in the literature took longer than expected given I underestimated the complexity of getting
intimately familiar with 13 binary serialization specifications. However, the knowledge earned through this study
was key to the success of the project. By the end of the study, I was proficient enough in binary serialization to
contribute fixes and clarifications to 6 popular open-source JSON-compatible binary serialization specifications. The
resulting >100 pages paper including annotated bit-strings for every considered serialization specification could not
be included in its entirety on this dissertation due to space constrains. However, I provide a summary of the study
throughout section 5.1, chapter 6 and chapter 10.

11.2 Measuring Existing Solutions
As explained in section 2.2, I found existing space-efficiency JSON-compatible benchmark literature to be insuffi-
cient to draw comprehensive conclusions. In particular, the input data considered by existing benchmarks was not
representative and it seems was collected without following any methodical selection process. This led to the mo-
tivation to write and publish the paper A Benchmark of JSON-compatible Binary Serialization Specifications [150].
This extensive benchmark study provided key insights about the combination of characteristics, optimizations and
trade-offs in binary serialization specifications that result in space-efficiency. The resulting >100 pages publication
could not be included in its entirety on this dissertation due to space constrains. However, I provided a summary of
such study throughout section 5.2, chapter 4, and chapter 7.

In comparison to existing benchmark literature, the core insight behind my study was a solution to the input data
selection process based on the definition of the formal taxonomy presented in section 4.2 to classify JSON documents
based on aspects that impact data serialization. Balancing the granularity and the breadth of the formal taxonomy
defined in section 4.2 was a challenge as considering additional dimensions exponentially increased the amount of
categories defined by the taxonomy. For this study, I wrote 189 schema definitions using 7 schema languages over the
course of two weeks. Because writing high-quality schema definitions is an arduous process, adding more categories
to the taxonomy would have greatly increased the time needed to complete the study. In terms of schema-driven
specifications, is it essential to write comparable schema definitions that take advantage of the features provided by
each serialization specification for fairness reasons. I attempted to reduce the risk of producing an unfair benchmark
by writing the most-advanced possible schema definition for each input document given the documented features and
suggestions. Whilst there is a chance I missed certain optimizations, I embraced this potential problem to argue that
documentation is an integral part of a software product and that the resulting benchmark also captures the ability of
each specification to explain a software engineer how to use its available features to achieve space-efficiency.

11.3 Designing a Novel Solution
The in-depth knowledge in JSON-compatible binary serialization and space-efficiency serialization techniques ac-
quired on section 11.1 and section 11.2 provided key insights into how to architect a novel JSON-compatible space-
efficiency schema-driven binary serialization specification. The most important conclusion drawn from the bench-
mark study presented in chapter 7 is that no approach for serializing a data type is strictly superior for every case. This
design decision was the fundamental principle that influenced the rest of the architecture and forced the conceptual
separation between the static analysis phase performed at build-time and the encoding phase performed at runtime.
The existing schema-driven serialization specifications studied in chapter 6 often aim to achieve space-efficiency by
embracing simplicity in their schema languages. However, I found that the complexity and expressiveness of JSON
Schema [159] as discussed in subsubsection 3.2.3.1 was key in enabling advanced space-efficient encodings and
optimizations that are not possible with simpler schema languages.

Defining a set of sensible transformation rules for the Canonicalizer component introduced in subsection 8.3.2
was a challenge. The difficulty was in finding the right balance for simplification without accidentally hindering the
ability to spot space-efficiency optimizations due to over-simplification. I solved this problem by clearly defining the
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objectives of the canonicalization process, outlining a set of guidelines to evaluate the suitability of every potential
transformation rule and prioritizing transformation rules that simplified the Mapper component in practice instead of
considering hypothetical cases.

11.4 Implementing the Proposed Solution
To ensure development productivity, I integrated the proof-of-concept implementation with the automated benchmark
software produced in chapter 7 while on the development phase to get instant feedback for every change to the
specification. Such tight feedback loop was the key for rapidly testing space-efficiency optimization experiments and
discard ideas that did not produce space-efficient results in practice.

11.4.1 JavaScript Numeric Data Types
In an attempt to extend the reach of JSON BinPack, I selected the TypeScript transpiler to produce an implemen-
tation that could run directly on web browsers. However, implementing serialization and deserialization procedures
using TypeScript proved to be a challenge as the substandard numeric capabilities of the JavaScript programming
language led to subtle precision and bitwise operation problems. For example, evaluating the arithmetic expression
11492746249590654 − 1 incorrectly results in 11492746249590652. Surprisingly, using the BigInt type 1 results in
a different failure: BigInt(11492746249590655)− BigInt(1) results in 11492746249590655n. Due to the lack of an
unsigned integer type, introducing bitwise operators in an arithmetic calculation forces JavaScript interpreters to cast
any positive integer that represents a valid negative integer using Two’s Complement [151] to a negative integer. For
example, 4294967276 << 1 results in −40. As a consequence, it was difficult to operate on large integer values and
get predictable results without forcing the interpreter to cast the value back to a positive integer at every calculation.

11.4.2 JSON Schema Runtime Applicators
JSON Schema applicators are keywords that take JSON Schema definitions as arguments. While many applicator
keywords are consumed during the static analysis phase, some applicators must be evaluated at runtime. For this
reason, encodings that implement support for runtime applicators must embed a complete JSON Schema implemen-
tation to resolve the applicator at runtime. These runtime applicators represent an exception to the architecture as
they force the Encoder component introduced in subsection 8.3.3 to understand the concept of JSON Schema instead
of remaining agnostic to the schema-language. This weakness of the architecture and potential runtime inefficiency
problem can be solved by adopting a code-generation approach to schema refinement where the input JSON Schema
definition is converted into specialized source code that serializes and deserializes input data given such schema. With
this approach, the implementation generates code that is agnostic to JSON Schema to address the validation problem.

11.4.3 JSON Schema Support
Due to time constrains, it was not possible to define JSON BinPack encoding and mapping rules that cover every
keyword defined by JSON Schema within the scope of this dissertation. Instead, I focused on implementing the
minimal amount of encoding and mapping rules necessary to prove the space-efficiency characteristics of JSON
BinPack in terms of the JSON documents considered by the benchmark study discussed in section 11.2. Instead
of imposing restrictions to the JSON Schema definitions that can be utilized with JSON BinPack, I designed the
proof-of-concept implementation to enable the incremental support for new JSON Schema keywords by deriving
space-efficient encodings from keywords that are understood by the implementation and falling back to a schema-less
mode of operation for subschemas that cannot be mapped to more specific encodings.

11.5 Final Conclusions
Overall, the project successfully achieved a proof-of-concept prototype. The time investment in fulfilling the pre-
requisites resulted in a novel JSON-compatible serialization specification that proved to be strictly space-efficient
in comparison to every alternative serialization specifications discussed within the scope of this study. Also, JSON

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
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BinPack resulted in higher average and median space-efficiency improvements with no negative size-reduction cases
in comparison to the considered general-purpose data compressors. Furthermore, JSON BinPack in the optional
schema-less mode proved to be strictly space-efficient in comparison to every alternative schema-less serialization
specification for every JSON document considered in the benchmark study. Additionally, JSON BinPack is able to
perform its task without requiring the adoption of custom JSON Schema vocabularies. This characteristic lowers the
barrier of adoption by enabling JSON BinPack to be used on any existing software system that adopts JSON Schema.

Research-level Preparation and Upskilling. I spent 6 months of part-time work analysing, understanding and
benchmarking existing serialization specifications. I read 250+ papers on the topic. As part of the supervision, I
developed research-level skills. With the acquired knowledge, I designed and implemented JSON BinPack over the
course of 2 months of part-time work.

Study. This study does not involve human participants and meets the criteria set for legal, ethical, social and
professional standards.
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12 | Future Work

Based on the research undertaken for this dissertation, I believe there is room for improvement in the following areas:

• Semantic Schema Versioning. To the best of my knowledge, there is no human readable versioning scheme
that can distingush between backwards and forwards compatible changes. Software libraries typically rely on
Semantic Versioning 1 to succintly communicate whether a software library update is safe by distingushing
between incompatible changes, backwards-compatible new functionality and backwards-compatible bug fixes.
I envision a versioning convention that is applicable to schemas and distingushes between backwards, forwards,
and fully compatible changes.

• Increased Benchmark Coverage. I believe there is room to augment the input data set of the space-efficiency
benchmark introduced in chapter 7 to include JSON documents that match the 9 missing taxonomy categories
described in subsection 5.2.3 and to increase the sample proportionality.

• Production-ready JSON BinPack Implementation. In section 8.4, I present a proof-of-concept implementa-
tion of JSON BinPack written using the TypeScript programming language to demonstrate the space-efficiency
potential of the proposed serialization specification. Because of the problems with the programming language
of choice discussed in subsection 11.4.1, I intend to produce a production-ready implementation of JSON Bin-
Pack using a systems programming language.

• JSON BinPack Code Generation Support. As discussed in [151], schema-driven serialization specifications
tend to support code generation to deliver optimal runtime-efficiency. Furthermore, subsection 11.4.2 presented
an architectural weakness of JSON BinPack that is solved by adopting a code-generation approach. Therefore,
I intend to introduce a code-generation component to the JSON BinPack architecture.

• Full JSON Schema Support in JSON BinPack. As discussed in subsection 11.4.3, the proof-of-concept
JSON BinPack implementation introduced in section 8.4 does not support every keyword defined by the JSON
Schema Core [159] and Validation [160] specifications. In the interest of time, the proof-of-concept imple-
mentation only supports the subset of JSON Schema keywords that were necessary to model the input JSON
documents considered by the benchmark study defined in chapter 7. I intend to continue writing encodings,
canonicalization and mapping rules to cover every official JSON Schema vocabulary.

1https://semver.org

105

https://semver.org


Bibliography

[1] 3GPP. 2021. Evolved Universal Terrestrial Radio Access Network (E-UTRAN); S1 Application Protocol
(S1AP). 3GPP. https://www.3gpp.org/ftp/Specs/archive/36_series/36.413/36413-
g40.zip

[2] J. Alakuijala and Z. Szabadka. 2016. Brotli Compressed Data Format. RFC. IETF. https://doi.org/
10.17487/RFC7932

[3] C. Andrei, D. Florescu, G. Fourny, J. Robie, and P. Velikhov. [n.d.]. Edition specification version 2.0.8 for
JSound 2.0. http://www.jsound-spec.org/publish/en-US/JSound/2.0/html-single/
JSound/index.html#appe-JSound-Revision_History

[4] Edman Anjos, Junhee Lee, and Srinivasa Rao Satti. 2016. SJSON: A succinct representation for JavaScript
object notation documents. , 173–178 pages.

[5] Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. 2017. Counting Types for
Massive JSON Datasets. In Proceedings of The 16th International Symposium on Database Programming
Languages. Association for Computing Machinery, New York, NY, USA, Article 9, 12 pages. https:
//doi.org/10.1145/3122831.3122837

[6] Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. 2019. Parametric schema infer-
ence for massive JSON datasets. The VLDB Journal 28, 4 (2019), 497–521.

[7] Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. 2019. Schemas and Types for
JSON Data: From Theory to Practice. 2060–2063. https://doi.org/10.1145/3299869.3314032

[8] Rahwa Bahta and Mustafa Atay. 2019. Translating JSON Data into Relational Data Using Schema-Oblivious
Approaches. In Proceedings of the 2019 ACM Southeast Conference (Kennesaw, GA, USA) (ACM SE ’19).
Association for Computing Machinery, New York, NY, USA, 233–236. https://doi.org/10.1145/
3299815.3314467

[9] Guido Barbaglia, Simone Murzilli, and Stefano Cudini. 2017. Definition of REST web services with JSON
schema. , 907–920 pages.
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[110] Dušan Petković. 2020. Non-Native Techniques for Storing JSON Documents into Relational Tables. In Pro-
ceedings of the 22nd International Conference on Information Integration and Web-Based Applications &
Services (Chiang Mai, Thailand) (iiWAS ’20). Association for Computing Machinery, New York, NY, USA,
16–20. https://doi.org/10.1145/3428757.3429103

[111] F. Pezoa, J.L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč. 2016. Foundations of JSON schema. , 263–
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A | Summary of JSON BinPack Encodings

The 34 parameterized encodings defined and implemented for the proof-of-concept JSON BinPack implementation
are summarized in Table A.1, Table A.2, Table A.3, Table A.4, Table A.5, Table A.6, Table A.7, Table A.8 and
Table A.9. In these definitions, JSON corresponds to the set of valid JSON [46] documents, String corresponds to
every valid sequence of Unicode [38] code-points as defined in [46], Schema corresponds to the set of valid JSON
Schema 2020-12 [159] definitions and Encoding corresponds to the set of valid Encoding Schemas as defined in
subsection 8.3.4. The serialization and deserialization implementations for every defined encoding can be found on
GitHub 1 and serialization examples can be found in the project documentation 2. I propose 4 to 10 encodings for each
supported data type where each variation is optimized for a difference scenario. Interesting aspects of the proposed
set of space-efficient encodings include:

• Packed Object Properties. Similar to ASN.1 PER Unaligned [124], the JSON object [46] encodings summa-
rized in Table A.6 and Table A.7 group boolean object values using bit-set data structures where each boolean
value occupies 1 bit. In comparison, other serialization specification studied in chapter 6 encode boolean object
values using at least 1 byte. Similarly, some object encodings summarized in Table A.7 pack bounded integer
values in a bit-aligned manner. For example, a bounded integer type with a range of 7 values is encoded using
3-bits.

• Custom Real Number Encoding. Instead of adopting the IEEE 764 [60] floating-point encoding, I propose a
space-efficient fixed-point arbitrary-precision real number encoding summarized in Table A.1. This encoding
is space-efficient for real numbers that do not consist of a large amount of digits.

• Shared Strings. The string encodings that rely on UTF-8 [38] summarized in Table A.3, Table A.4 and
Table A.11 are capable of de-duplicating multiple occurrences of the same string values and object keys in a
JSON [46] document by encoding pointers to the previous occurrence of the string or to the closest pointer that
eventually points to the desired string for data-locality purposes.

• Word-based Text Compressor. In Table A.4, I define a space-efficient encoding for serializing text prose
based on an alphabet that represents common words as explained in [73]. The input alphabet is configurable to
accomodate for different scenarios and text written in different languages.

• Integer Multiplers. The integer encodings summarized in Table A.1 are able to increase space-efficiency of
encoding bounded integers by the presence of a multiplier that decreases the range of possible values. When
the multiplier value is not the unit of multiplication, the range of possible values is encoded as an enumeration.

• Amortized String Length Prefixes in Schema-less Mode. In Table A.11, I define 7 string encodings special-
ized for encoding strings of different lengths to reduce the size of string length markers to a minimum. Each
encoding targets an expotentially-growing range of lengths ranging from 0 to 210 UTF-8 [38] code-points.

• Low-overhead Composite Structures. The JSON [46] object and array encodings summarized Table A.6,
Table A.7 and Table A.5 add minimal structural space overhead to the resulting bit-strings. For example,
serializing an object with a single required property or a fixed-length array of one element is equal to serializing
the standalone value.

• Top-level Enumerations. In Table A.2, I define an enumeration encoding that is applicable to enumerations
that are not nested within other structures. For space-efficiency, the first element of the enumeration is repre-
sented by not encoding any information on the bit-string.

1https://github.com/jviotti/jsonbinpack/tree/c029870287bedfa54afe7b4b5d39e2e95ecff91f/lib/
encoder

2https://github.com/jviotti/jsonbinpack/tree/c029870287bedfa54afe7b4b5d39e2e95ecff91f/docs/
encoder
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Table A.1: A high-level overview of the 6 numeric encodings defined for the proof-of-concept JSON BinPack imple-
mentation for the Encoder component introduced in subsection 8.3.3.

Encoding Name and Parameters Description

BOUNDED MULTIPLE 8BITS ENUM FIXED value divided by multiplier, minus the ceil of minimum divided by
multiplier, encoded as an 8-bit fixed-length unsigned integer.value : Z

maximum : Z
minimum : Z
multiplier : N
FLOOR MULTIPLE ENUM VARINT value divided by multiplier, minus the ceil of minimum divided by

multiplier, encoded as a Little Endian Base 128 (LEB) [151]
variable-length unsigned integer.

value : Z
minimum : Z
multiplier : N
ROOF MULTIPLE MIRROR ENUM VARINT The floor of maximum divided by multiplier, minus value divided

by multiplier, encoded as a Little Endian Base 128 (LEB) [151]
variable-length unsigned integer.

value : Z
maximum : Z
multiplier : N
ARBITRARY MULTIPLE ZIGZAG VARINT

value divided by multiplier encoded as a ZigZag-encoded Little
Endian Base 128 (LEB) [151] variable-length unsigned integer.value : Z

multiplier : N
DOUBLE VARINT TUPLE A sequence of two Little Endian ZigZag-encoded Base 128

variable-length [151] unsigned integers: The integer that results
from concatenating the integral part and the decimal part of value
and the position of the decimal mark from the first digit of value
where a negative integer results in left zero-padding.

value : R

Table A.2: A high-level overview of the 4 enumeration encodings defined for the proof-of-concept JSON BinPack
implementation for the Encoder component introduced in subsection 8.3.3.

Encoding Name and Parameters Description

BOUNDED CHOICE INDEX The index of value in the 8-bit choices enumeration encoded as an 8-bit
fixed-length unsigned integer.value : JSON

choices : seq JSON
LARGE BOUNDED CHOICE INDEX The index of value in the choices enumeration encoded as a Little Endian

Base 128 (LEB) [151] variable-length unsigned integer.value : JSON
choices : seq JSON
TOP LEVEL 8BIT CHOICE INDEX If value corresponds to the index 0 to the choices enumeration, encode no

data. Otherwise, encode the index of value in the choices enumeration
minus 1 as an 8-bit fixed-length unsigned integer.

value : JSON
choices : seq JSON
CONST NONE The value matches choice and is not encoded.
value : JSON
choice : JSON
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Table A.3: A high-level overview of the first 5 out of 9 string encodings defined for the proof-of-concept JSON
BinPack implementation for the Encoder component introduced in subsection 8.3.3. The remaining 4 encodings are
listed in Table A.4.

Encoding Name and Parameters Description

UTF8 STRING NO LENGTH The fixed-length UTF-8 [38] encoding of the input string.
value : String
size : N0

FLOOR PREFIX LENGTH ENUM VARINT The byte-length of value minus minimum plus 1 as a Little
Endian Base 128 (LEB) [151] variable-length unsigned
integer followed by the UTF-8 [38] encoding of the value. If
value has already been encoded, the encoding may consist of
the byte constant 0x00 followed by the byte-length of value
minus minimum plus 1 as a Little Endian Base 128 (LEB)
[151] variable-length unsigned integer, followed by the
current offset minus the offset to the start of value in the
buffer encoded as a Little Endian Base 128 (LEB) [151]
variable-length unsigned integer.

value : String
minimum : N0

ROOF PREFIX LENGTH ENUM VARINT The maximum minus the byte-length of value plus 1 as a
Little Endian Base 128 (LEB) [151] variable-length
unsigned integer followed by the UTF-8 [38] encoding of
value. If value has already been encoded, the encoding may
consist of the byte constant 0x00 followed by the maximum
minus the byte-length of value plus 1 as a Little Endian Base
128 (LEB) [151] variable-length unsigned integer, followed
by the current offset minus the offset to the start of value in
the buffer encoded as a Little Endian Base 128 (LEB) [151]
variable-length unsigned integer.

value : String
maximum : N0

BOUNDED PREFIX LENGTH 8BIT FIXED The byte-length value minus minimum plus 1 as an 8-bit
fixed-length unsigned integer followed by the UTF-8 [38]
encoding of value. If value has already been encoded to the
buffer, the encoding may consist of the byte constant 0x00
followed by the byte-length of value minus minimum plus 1
as an 8-bit fixed-length unsigned integer, followed by the
current offset minus the offset to the start of value in the
buffer encoded as a Little Endian Base 128 (LEB) [151]
variable-length unsigned integer.

value : String
minimum : N0

maximum : N0

STRING UNBOUNDED SCOPED PREFIX LENGTH The byte-length of value plus 1 as a Little Endian Base 128
(LEB) [151] variable-length unsigned integer followed by
the UTF-8 [38] encoding of value. If value has already been
encoded to the buffer using this encoding, the encoding is
the byte constant 0x00 followed by the current offset minus
the offset to the start of the encoding as a Little Endian Base
128 (LEB) [151] variable-length unsigned integer.

value : String
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Table A.4: This table is a continuation of Table A.3. A high-level overview of the last 4 out of 9 string encodings
defined for the proof-of-concept JSON BinPack implementation for the Encoder component introduced in subsec-
tion 8.3.3.

Encoding Name and Parameters Description

RFC3339 DATE INTEGER TRIPLET An RFC3339 [85] date as the sequence of 3 integers: the year as a 16-bit
fixed-length Little Endian unsigned integer, the month as an 8-bit
fixed-length unsigned integer, and the day as an 8-bit fixed-length
unsigned integer.

value : String

URL PROTOCOL HOST REST The sequence of three strings encoded using
FLOOR PREFIX LENGTH ENUM VARINT (see Table A.3) with a
minimum equal to 0: the protocol excluding the colon, the host
excluding the trailing slash, and the rest of the URL including the
leading slash.

value : String

STRING BROTLI The byte-length of value as a Little Endian Base 128 (LEB) [151]
variable-length unsigned integer followed by value compressed using the
Brotli lossless compression format [2].

value : String

STRING DICTIONARY COMPRESSOR The encoding serializes value compressing words given the dictionary.
The encoding starts with the byte-length of value as a Little Endian Base
128 (LEB) [151] variable-length unsigned integer. If a word delimited
by the ASCII [33] space character is present in the dictionary, the
corresponding dictionary entry plus 1 is encoded as a ZigZag-encoded
Little Endian Base 128 (LEB) [151] variable-length unsigned integer.
The portions of text in between dictionary matches are encoded as the
negative string byte-length minus 1 as a ZigZag-encoded Little Endian
Base 128 (LEB) [151] variable-length unsigned integer followed by the
UTF-8 [38] encoding of the string. If the unmatched text portion has
already been encoded to the buffer, the encoding may consist of the byte
constant 0x00 followed by the byte-length of the string as a Little
Endian Base 128 (LEB) [151] variable-length unsigned integer, followed
by the current offset minus the offset to the start of the value in the buffer
encoded as a Little Endian Base 128 (LEB) [151] variable-length
unsigned integer.

value : String
dictionary : P(String× N0)
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Table A.5: A high-level overview of the 5 array encodings defined for the proof-of-concept JSON BinPack imple-
mentation for the Encoder component introduced in subsection 8.3.3.

Encoding Name and Parameters Description

FIXED TYPED ARRAY The elements of the fixed-length value array encoded in order.
The encoding of the element at a given index is either determined
by prefixEncodings at the same index or encoding.

value : seq JSON
size : N0

prefixEncodings : seqEncoding
encoding : Encoding
FLOOR TYPED LENGTH PREFIX The length of value minus minimum encoded as a Little Endian

Base 128 (LEB) [151] variable-length unsigned integer followed
by the elements of value encoded in order. The encoding of the
element at a given index is either determined by prefixEncodings
at the same index or encoding.

value : seq JSON
minimum : N0

prefixEncodings : seqEncoding
encoding : Encoding
ROOF TYPED LENGTH PREFIX maximum minus the length of value encoded as a Little Endian

Base 128 (LEB) [151] variable-length unsigned integer followed
by the elements of value encoded in order. The encoding of the
element at a given index is either determined by prefixEncodings
at the same index or encoding.

value : seq JSON
maximum : N0

prefixEncodings : seqEncoding
encoding : Encoding
BOUNDED TYPED LENGTH PREFIX If minimum equals maximum, the elements of value encoded in

order. Otherwise, the length of value minus minumum as a Little
Endian Base 128 (LEB) [151] variable-length unsigned integer
followed by the elements of value encoded in order. In both cases,
the encoding of the element at a given index is either determined
by prefixEncodings at the same index or encoding.

value : seq JSON
minimum : N0

maximum : N0

prefixEncodings : seqEncoding
encoding : Encoding
BOUNDED 8BITS TYPED LENGTH PREFIX If minimum equals maximum, the elements of value encoded in

order. Otherwise, the length of value minus minumum as a
fixed-length 8-bit unsigned integer followed by the elements of
value encoded in order. In both cases, the encoding of the element
at a given index is either determined by prefixEncodings at the
same index or encoding.

value : seq JSON
minimum : N0

maximum : N0

prefixEncodings : seqEncoding
encoding : Encoding
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Table A.6: A high-level overview of the first 5 out of 10 object encodings defined for the proof-of-concept JSON
BinPack implementation for the Encoder component introduced in subsection 8.3.3. The remaining 4 encodings are
listed in Table A.7.

Encoding Name and Parameters Description

REQUIRED ONLY BOUNDED TYPED OBJECT The boolean properties in booleanRequiredProperties
encoded in order as a byte-aligned bitset where the
least-significant bit corresponds to the first property,
followed by the properties in requiredProperties
encoded in order according to the encodings declared
in propertyEncodings.

value : P(String× JSON)
booleanRequiredProperties : seq String
requiredProperties : seq String
propertyEncodings : P(String× Encoding)

NON REQUIRED BOUNDED TYPED OBJECT The length of optionalProperties as a Little Endian
Base 128 (LEB) [151] variable-length unsigned
integer followed by a byte-aligned bitset where the
least-significant bit corresponds to the first element of
optionalProperties, followed by the values of value
encoded in order according to the encodings declared
in propertyEncodings.

value : P(String× JSON)
optionalProperties : seq String
propertyEncodings : P(String× Encoding)

MIXED BOUNDED TYPED OBJECT The required properties subset of value encoded as
REQUIRED ONLY BOUNDED TYPED OBJECT (see
Table A.6) followed by the optional properties subset
of value encoded as
NON REQUIRED BOUNDED TYPED OBJECT (see
Table A.6).

value : P(String× JSON)
booleanRequiredProperties : seq String
requiredProperties : seq String
optionalProperties : seq String
propertyEncodings : P(String× Encoding)
ARBITRARY TYPED KEYS OBJECT WITHOUT LENGTH Each pair of value encoded as the key followed by the

value according to keyEncoding and encoding. The
order in which pairs are encoded is undefined.

value : P(String× JSON)
size : N1

encoding : Encoding
keyEncoding : Encoding
ARBITRARY TYPED KEYS OBJECT The number of key-value pairs in value as a Little

Endian Base 128 (LEB) [151] variable-length
unsigned integer followed by each pair of value
encoded as the key followed by the value according to
keyEncoding and encoding. The order in which pairs
are encoded is undefined.

value : P(String× JSON)
encoding : Encoding
keyEncoding : Encoding
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Table A.7: This table is a continuation of Table A.6. A high-level overview of the last 5 out of 10 object encodings
defined for the proof-of-concept JSON BinPack implementation for the Encoder component introduced in subsec-
tion 8.3.3.

Encoding Name and Parameters Description

REQUIRED UNBOUNDED TYPED OBJECT The required properties subset of value encoded as
REQUIRED ONLY BOUNDED TYPED OBJECT (see Table A.6)
followed by the rest of value encoded as
ARBITRARY TYPED KEYS OBJECT (see Table A.6).

value : P(String× JSON)
booleanRequiredProperties : seq String
requiredProperties : seq String
encoding : Encoding
keyEncoding : Encoding
propertyEncodings : P(String× Encoding)
OPTIONAL UNBOUNDED TYPED OBJECT The optional properties subset of value encoded as

NON REQUIRED BOUNDED TYPED OBJECT (see Table A.6)
followed by the rest of value encoded as
ARBITRARY TYPED KEYS OBJECT (see Table A.6).

value : P(String× JSON)
optionalProperties : seq String
encoding : Encoding
keyEncoding : Encoding
propertyEncodings : P(String× Encoding)
MIXED UNBOUNDED TYPED OBJECT The required properties subset of value encoded as

REQUIRED ONLY BOUNDED TYPED OBJECT (see Table A.6),
followed by the optional properties subset of value encoded as
NON REQUIRED BOUNDED TYPED OBJECT (see Table A.6),
followed by the rest of value encoded as
ARBITRARY TYPED KEYS OBJECT (see Table A.6).

value : P(String× JSON)
booleanRequiredProperties : seq String
requiredProperties : seq String
optionalProperties : seq String
encoding : Encoding
keyEncoding : Encoding
propertyEncodings : P(String× Encoding)
PACKED UNBOUNDED OBJECT The length of packedRequiredProperties as a Little Endian Base

128 (LEB) [151] variable-length unsigned integer followed by the
properties of value listed in packedRequiredProperties encoded in
order followed by the required non-packed properties subset of
value encoded as REQUIRED ONLY BOUNDED TYPED OBJECT

(see Table A.6), followed by the optional non-packed properties
subset of value encoded as
NON REQUIRED BOUNDED TYPED OBJECT (see Table A.6),
followed by the rest of value encoded as
ARBITRARY TYPED KEYS OBJECT (see Table A.6). The packed
integer properties are encoded as a byte-aligned reversed Little
Endian buffer using the least possible amount of bits for each item
as determined by the bounds of packedEncoding.

value : P(String× JSON)
booleanRequiredProperties : seq String
requiredProperties : seq String
optionalProperties : seq String
packedRequiredProperties : seq String
packedEncoding : Encoding
encoding : Encoding
keyEncoding : Encoding
propertyEncodings : P(String× Encoding)

PACKED BOUNDED REQUIRED OBJECT The properties of value listed in packedRequiredProperties
encoded in order followed by the required non-packed properties
subset of value encoded as
REQUIRED ONLY BOUNDED TYPED OBJECT (see Table A.6). The
packed integer properties are encoded as a byte-aligned reversed
Little Endian buffer using the least possible amount of bits for each
item as determined by the bounds of packedEncoding.

value : P(String× JSON)
booleanRequiredProperties : seq String
requiredProperties : seq String
packedRequiredProperties : seq String
packedEncoding : Encoding
propertyEncodings : P(String× Encoding)
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Table A.8: A high-level overview of the single union encoding defined for the proof-of-concept JSON BinPack
implementation for the Encoder component introduced in subsection 8.3.3.

Encoding Name and Parameters Description

CHOICE INDEX PREFIX The index to the matching choice of value in schemas as a Little Endian
Base 128 (LEB) [151] variable-length unsigned integer followed by value
encoded as indicated by the corresponding encodings entry.

value : JSON
schemas : seq Schema
encodings : seqEncoding

Table A.9: A high-level overview of the single encoding for arbitrary values defined for the proof-of-concept JSON
BinPack implementation for the Encoder component introduced in subsection 8.3.3.

Encoding Name and Parameters Description

ANY PACKED TYPE TAG BYTE PREFIX The rules for encoding each supported data type are presented in
Table A.10 and Table A.11.value : JSON
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Table A.10: The encoding rules for serializing arbitrary data types using the
ANY PACKED TYPE TAG BYTE PREFIX encoding introduced in Table A.9. This table is continued in
Table A.11.

Type Condition First 5-bits Next 3-bits Next

Unsigned Integer 0 ≤ value < 25 − 1 value + 1 101 Nothing
Unsigned Integer 25 − 1 ≤ value < 28 00000 101 value as a fixed-length 8-bit unsigned

integer
Unsigned Integer value ≥ 28 00011 111 value as a Little Endian Base 128 (LEB)

[151] variable-length unsigned integer
Signed Integer 0 > value > −25 |value| 110 Nothing
Signed Integer −25 ≥ value > −28 00000 110 |value| − 1 as a fixed-length 8-bit un-

signed integer
Signed Integer value ≤ −28 00100 111 |value| − 1 as a Little Endian Base 128

(LEB) [151] variable-length unsigned
integer

Real Number None 00101 111 DOUBLE VARINT TUPLE (see Ta-
ble A.1)

False None 00000 111 Nothing
True None 00001 111 Nothing
Null None 00010 111 Nothing
Object #value < 25 − 1 #value + 1 011 Each pair of value encoded in arbitrary

order as the key followed by the value
according to the rules defined in Ta-
ble A.10 and Table A.11

Object #value ≥ 25 − 1 00000 011 #value as a Little Endian Base 128
(LEB) [151] variable-length unsigned
integer followed by each pair of value
encoded in arbitrary order as the key
followed by the value according to the
rules defined in Table A.10 and Ta-
ble A.11

Array #value < 25 − 1 #value + 1 100 The elements of value encoded in order
using the rules defined in Table A.10
and Table A.11

Array #value ≥ 25 − 1 00000 100 #value as a Little Endian Base 128
(LEB) [151] variable-length unsigned
integer followed by the elements of
value encoded in order using the rules
defined in Table A.10 and Table A.11
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Table A.11: Continuation of Table A.10.

Type Condition First 5-bits Next 3-bits Next

Shared String #value < 25 − 1 #value + 1 000 Current offset minus the tar-
get offset as a Little Endian
Base 128 (LEB) [151] variable-
length unsigned integer

Shared String #value ≥ 25 − 1 00000 000 A sequence of two Little En-
dian Base 128 (LEB) [151]
variable-length unsigned inte-
gers: #value and the current
offset minus the target offset

String #value < 25 − 1 #value + 1 001 value as a UTF-8 [38] string
String 25 − 1 ≤ #value < 26 − 2 #value− 25 − 1 010 value as a UTF-8 [38] string
String 26 − 2 ≤ #value < 27 00000 001 #value as a Little Endian

Base 128 (LEB) [151] variable-
length unsigned integer fol-
lowed by value as a UTF-8 [38]
string

String 27 ≤ #value < 28 00111 111 #value − 27 as a Little En-
dian Base 128 (LEB) [151]
variable-length unsigned inte-
ger followed by value as a
UTF-8 [38] string

String 28 ≤ #value < 29 01000 111 #value − 28 as a Little En-
dian Base 128 (LEB) [151]
variable-length unsigned inte-
ger followed by value as a
UTF-8 [38] string

String 29 ≤ #value < 210 01001 111 #value − 29 as a Little En-
dian Base 128 (LEB) [151]
variable-length unsigned inte-
ger followed by value as a
UTF-8 [38] string

String #value ≥ 210 01010 111 #value − 210 as a Little En-
dian Base 128 (LEB) [151]
variable-length unsigned inte-
ger followed by value as a
UTF-8 [38] string
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B | JSON Compatibility Analysis

Implementing the benchmark software and writing schemas for the set of schema-driven serialization specification
revealed that some of the considered schema-driven serialization specifications are not strictly compatible with JSON
[46]. When utilizing these serialization specifications, some instances of the input data listed in Table 5.3 and Table 5.4
required transformations to be accepted by the implementations or the respective schema definition languages. The
required transformations can be inspected in the benchmark public GitHub repository 1. These transformations are
divided into the following categories:

• Keys. The schema definition languages provided by ASN.1 [123], Microsoft Bond [96], Cap’n Proto [146],
FlatBuffers [143], Protocol Buffers [67], and Apache Thrift [129] disallow property names that include hy-
phens, slashes, dollar signs, parenthesis, and periods. Also, ASN.1 [123] disallows property names that start
with an underscore and Cap’n Proto [146] disallows property names that include underscores and capitalised
property names. Furthermore, Protocol Buffers [67] and Apache Thrift [129] disallow property names that
equal the reserved keywords async, extends, in, and with. To handle these cases, the disallowed properties are
renamed to a close variation that the schema language permits.

• Values. Protocol Buffers [67] defines the null type as an enumeration consisting of a single constant: zero
2. FlatBuffers [143] does not support a null type. When using FlatBuffers [143], I represent this type with
an enumeration consisting of a single constant in the same manner as Protocol Buffers [67]. In both cases, I
transform any JSON [46] null value into zero.

• Structural. Neither Microsoft Bond [96], Cap’n Proto [146], FlatBuffers [143], Protocol Buffers [67], nor
Apache Thrift [129] support encoding a JSON document that consists of a top level array. In these cases, I
move the array into a wrapper structure. FlatBuffers [143] and Protocol Buffers [67] do not support nested
arrays. In these cases, I introduce wrapper structures at every array nesting level. ASN.1 [123], Microsoft
Bond [96], Cap’n Proto [146], FlatBuffers [143], Protocol Buffers [67], and Apache Thrift [129] do not support
heterogenous arrays of non-composite types. In these cases, I convert the heterogenous arrays into arrays
of union structures. Microsoft Bond [96] does not support union types. In this case I introduce a structure
consisting of optional fields. Additionally, the use of unions in FlatBuffers [143] requires the introduction of an
additional textual property to signify the union choice. In order not to put this specification at a disadvantage,
I encode the fixed-length heterogenous array as tables where their property names correspond to the array
indexes.

The type of transformations that were necessary for each JSON document from the input data defined in Table 5.3
and Table 5.4 are listed in Table B.1. In summary, every schema-less binary serialization specifications listed in
Table 5.6 is compatible with the input data set. In terms of schema-driven specifications, only Apache Avro [61] is
strictly compatible with the input data set.

1https://github.com/jviotti/binary-json-size-benchmark
2https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/struct.proto
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Table B.1: A summary of the transformations required to serialize the input data JSON documents listed in Table 5.3
and Table 5.4 using the set of binary serialization specifications listed in Table 5.5 and Table 5.6. The JSON documents
from Table 5.3 and Table 5.4 that are not present in this table did not require any type of transformation. Each letter
signifies the type of required transformation as defined in this section. The letter K stands for Keys, the letter V stands
for Values, and the letter S stands for Structural.
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C | Schema Evolution Analysis

I selected a set of structural and type conversion schema transformations and tested if they result in compatible
changes using the schema-driven serialization implementations and encodings introduced in Table 5.1. A different
encoding of the same schema-driven serialization specification may yield different results. The results of the structural
schema transformations are presented in Table C.2 and the results of the type conversion schema transformations are
presented in Table C.3. I mark the test results as shown in Table C.1.

I found that sometimes the schema evolution features of a serialization specification are subtly affected by the data
types being used and by the infinite possibilities of surrounding data. For this reason, I recommend schema-writers
to use these results as a guide and to unit test the schema transformations they plan to apply before deploying them.
I also encountered various cases of undocumented compatible schema transformations. These transformations may
rely on accidental behaviour of either the serialization specification design or the chosen implementation and may
carry no future guarantees. I encourage readers to consult the official schema evolution documentation and check if
their serialization specification of choice satisfies the intended compatible transformation by design or by accident.

Table C.1: Descriptions of how I will mark schema evolution transformation results.

Symbol Description When

A Fully-compatible The schemas are fully-compatible for all tested in-
stances

F Forwards-compatible The schemas are forwards-compatible for all
tested instances, despite backwards-compatibility
failures or exceptions

B Backwards-compatible The schemas are backwards-compatible for all
tested instances, despite forwards-compatibility
failures or exceptions

N Silently-incompatible The schemas are not forwards nor backwards-
compatible in at least one tested instance but no
exception is thrown

X Runtime exception The schemas are neither forwards nor backwards-
compatible for all tested instances and at least one
exception is thrown

Not-applicable The schema transformation is not applicable to the
serialization specification as it involves data types
not supported by the serialization specification

Description from Table C.2.
(1) Microsoft Bond [96] supports the concept of required optional fields that are required at serialization time but

optional at deserialization time. This concept enables schema-writers to make an optional field required and viceversa
in a fully-compatible manner through a two-step process: Changing an optional or required field to required optional,
deploying the schema update to both producers and consumers, and then changing the required optional field to
required or optional.

(2) ASN.1 PER Unaligned [124] and Cap’n Proto [146] support updating a list of scalars to a list of structures
where the scalar is the first and only element in a fully-compatible manner. In the case of ASN.1 PER Unaligned, this
transformation is possible because structures are list of values and a list of structures with a single required scalar is
encoded in the same manner as a list of such scalars. In the case of Cap’n Proto, a list definition declares whether
its element are scalars or composites as shown in [151]. If the elements are composite, the list definition points to a
64-bit word that defines the composite elements, allowing the deserializer to determine if following the pointer or not
yields a scalar of the same expected type. As an exception, Cap’n Proto does not support this schema transformation
on a list of booleans for runtime-efficiency reasons 1.

(3) Protocol Buffers Binary Wire Format [67] supports transforming a field into a list of a compatible type in a
backwards-compatible manner. Protocol Buffers Binary Wire Format encodes lists as multiple occurrences of the
same field identifier or as a concatenation of the members prefixed with a length-delimited type definition in the case
of packed field encoding. This design decision makes implementations using the new schema interpret a standalone
value as a list consisting of one value.

1https://capnproto.org/language.html#evolving-your-protocol
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(4) Serialization specifications based on field identifiers that implement unions without involving additional struc-
tures such as Protocol Buffers Binary Wire Format [67] support forwards-compatibility when moving an optional
field into an existing union. In this case, union choices and fields outside of the union share the same field identifier
context. This means that an application using the older schema either leaves the union choices or the optional field
outside the union unset. In comparison, FlatBuffers [143] requires creating a new data structure to hold the union
type. As a result, it supports backwards-compatibility when moving an optional field into an existing union as an
application using the newer schema will ignore the optional field outside of the union. The converse is true when
extracting an optional field out of an existing union.

(5) Protocol Buffers [67] implements unions based on field identifiers on the current identifier context and supports
unions of a single choice. Therefore, an optional field and a union of the single field are equivalent. A similar
argument follows for Cap’n Proto [146], however Cap’n Proto does not support unions of a single choice, making
this transformation only backwards-compatible. Apache Avro [61] supports unions of a single choice, however its
schema resolution rules throw an exception on the forwards-compatible case.

Table C.2: A schema transformation result is annotated as shown in Table C.1. The Type column documents whether
a schema transformation confines (C), expands (E), changes (!), or preserves (=) the domain of the schema.
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Table C.3: A schema transformation result is annotated as shown in Table C.1. The Type column documents whether
a schema transformation confines (C), expands (E), changes (!), or preserves (=) the domain of the schema.
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D | Feedback

Initial feedback received from the community after publishing the papers A Survey of JSON-compatible Binary Se-
rialization Specifications [151] and A Benchmark of JSON-compatible Binary Serialization Specifications [150] is
shown in Figure D.1, Figure D.2, Figure D.3, Figure D.4 and Figure D.5.

Figure D.1: Wouter van Oortmerssen, the primary author of FlatBuffers [143] and FlexBuffers [144] at Google, has
shared the paper A Survey of JSON-compatible Binary Serialization Specifications [151] on Twitter 1.

Figure D.2: An excerpt from an e-mail sent by Wouter van Oortmerssen, the primary author of FlatBuffers [143] and
FlexBuffers [144] at Google after the publication of A Survey of JSON-compatible Binary Serialization Specifications
[151].

Figure D.3: Feedback from a member of the MessagePack [64] community on GitHub 2.

1https://twitter.com/wvo/status/1480636224339853314?s=20
2https://github.com/msgpack/msgpack/issues/316#issuecomment-1012651688
3https://lists.apache.org/thread/r6o9lx4jhowob0xrjlc8z5wym7vltjy3
4https://lists.apache.org/thread/nfl981yhnvs756lqyknjx8f26vdpfnkn
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Figure D.4: Feedback from a member of the Apache Avro [61] community on the users mailing list 3.

Figure D.5: Feedback from a member of the Apache Avro [61] community on the users mailing list 4.
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